File size: 6,662 Bytes
28e228f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
from rudalle import get_tokenizer, get_vae
from rudalle.utils import seed_everything

import sys


import gradio as gr

from PIL import Image

device = 'cpu'
import clip
import os
from torch import nn
import numpy as np
import torch
import torch.nn.functional as nnf
import sys
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from tqdm import tqdm, trange
import PIL.Image
from IPython.display import Image 

import transformers

device = 'cuda' if torch.cuda.is_available() else 'cpu'

model_path = 'coco_prefix_latest.pt'



#title Model

class MLP(nn.Module):

    def forward(self, x):
        return self.model(x)

    def __init__(self, sizes, bias=True, act=nn.Tanh):
        super(MLP, self).__init__()
        layers = []
        for i in range(len(sizes) -1):
            layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
            if i < len(sizes) - 2:
                layers.append(act())
        self.model = nn.Sequential(*layers)


class ClipCaptionModel(nn.Module):

    #@functools.lru_cache #FIXME
    def get_dummy_token(self, batch_size, device):
        return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)

    def forward(self, tokens, prefix, mask, labels):
        embedding_text = self.gpt.transformer.wte(tokens)
        prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
        #print(embedding_text.size()) #torch.Size([5, 67, 768])
        #print(prefix_projections.size()) #torch.Size([5, 1, 768])
        embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
        if labels is not None:
            dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
            labels = torch.cat((dummy_token, tokens), dim=1)
        out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
        return out

    def __init__(self, prefix_length, prefix_size: int = 512):
        super(ClipCaptionModel, self).__init__()
        self.prefix_length = prefix_length

        self.gpt = GPT2LMHeadModel.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2')
        
        self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
        if prefix_length > 10:  # not enough memory
            self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length)
        else:
            self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length))


class ClipCaptionPrefix(ClipCaptionModel):

    def parameters(self, recurse: bool = True):
        return self.clip_project.parameters()

    def train(self, mode: bool = True):
        super(ClipCaptionPrefix, self).train(mode)
        self.gpt.eval()
        return self
        
 

clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2')
prefix_length = 10
model = ClipCaptionModel(prefix_length)
model.load_state_dict(torch.load(model_path, map_location='cpu')) 
model.to(device)
def generate2(
        model,
        tokenizer,
        tokens=None,
        prompt=None,
        embed=None,
        entry_count=1,
        entry_length=67,  
        top_p=0.98,
        temperature=1.,
        stop_token = '',
):
    model.eval()
    generated_num = 0
    generated_list = []
    stop_token_index = tokenizer.encode(stop_token)[0]
    filter_value = -float("Inf")
    device = next(model.parameters()).device

    with torch.no_grad():

        for entry_idx in trange(entry_count):
            if embed is not None:
                generated = embed
            else:
                if tokens is None:
                    tokens = torch.tensor(tokenizer.encode(prompt))
                    tokens = tokens.unsqueeze(0).to(device)

                generated = model.gpt.transformer.wte(tokens)

            for i in range(entry_length):

                outputs = model.gpt(inputs_embeds=generated)
                logits = outputs.logits
                logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
                sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1)
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
                                                    ..., :-1
                                                    ].clone()
                sorted_indices_to_remove[..., 0] = 0

                indices_to_remove = sorted_indices[sorted_indices_to_remove]
                logits[:, indices_to_remove] = filter_value
                #
                top_k = 2000 
                top_p = 0.98
                #print(logits)
                #next_token = transformers.top_k_top_p_filtering(logits.to(torch.int64).unsqueeze(0), top_k=top_k, top_p=top_p)
                next_token = torch.argmax(logits, -1).unsqueeze(0)
                next_token_embed = model.gpt.transformer.wte(next_token)

                if tokens is None:
                    tokens = next_token
                else:
                    tokens = torch.cat((tokens, next_token), dim=1)
                generated = torch.cat((generated, next_token_embed), dim=1)
               
                if stop_token_index == next_token.item():
                    break

            output_list = list(tokens.squeeze().cpu().numpy())
            output_text = tokenizer.decode(output_list)
            generated_list.append(output_text)

    return generated_list[0]
 


def _to_caption(pil_image):
    
    image = preprocess(pil_image).unsqueeze(0).to(device)
    with torch.no_grad():
        
        prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
        prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)

        generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed)
    return generated_text_prefix



def classify_image(inp):
  print(type(inp))
  inp =  Image.fromarray(inp)
  texts = _to_caption(inp)
  
  print(texts)

  
  return texts

image = gr.inputs.Image(shape=(128, 128))
label = gr.outputs.Label(num_top_classes=3)


iface = gr.Interface(fn=classify_image, description="https://github.com/AlexWortega/ruImageCaptioning RuImage Captioning  trained for a image2text task to predict food calories by https://t.me/lovedeathtransformers Alex Wortega", inputs=image, outputs="text",examples=[
  ['b9c277a3.jpeg']])
iface.launch()