File size: 7,832 Bytes
9a5d905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import tempfile
import subprocess
import time

from typing import Optional
from AinaTheme import AinaGradioTheme
import gradio as gr
import numpy as np
import torch
import os
from TTS.utils.synthesizer import Synthesizer

from dotenv import load_dotenv

torch.manual_seed(0)
np.random.seed(0)

# CleanUnet Dependencies

import json
from copy import deepcopy

import numpy as np
import torch

# from util import print_size, sampling

import torchaudio
import torchaudio.transforms as T

import random

random.seed(0)
torch.manual_seed(0)
np.random.seed(0)

SAMPLE_RATE = 8000

CONFIG = "configs/DNS-large-full.json"
# CHECKPOINT = "./exp/DNS-large-full/checkpoint/pretrained.pkl"

# Parse configs. Globals nicer in this case
with open(CONFIG) as f:
    data = f.read()
    config = json.loads(data)
    gen_config = config["gen_config"]
    global network_config
    network_config = config["network_config"]  # to define wavenet
    global train_config
    train_config = config["train_config"]  # train config
    global trainset_config
    trainset_config = config["trainset_config"]  # to read trainset configurations

# global use_denoise
# use_denoise = False

# setup local experiment path
exp_path = train_config["exp_path"]
print('exp_path:', exp_path)

# load data
loader_config = deepcopy(trainset_config)
loader_config["crop_length_sec"] = 0

#############################################################################################################

load_dotenv()

MAX_INPUT_TEXT_LEN = int(os.environ.get("MAX_INPUT_TEXT_LEN", default=500))

# Dynamically read model files, exclude 'speakers.pth'
model_files = [f for f in os.listdir(os.getcwd()) if f.endswith('.pth') and f != 'speakers.pth']
model_files.sort(key=lambda x: os.path.getmtime(os.path.join(os.getcwd(), x)), reverse=True)

speakers_path = "speakers.pth"
speakers_list = torch.load(speakers_path)
speakers_list = list(speakers_list.keys())
speakers_list = [speaker for speaker in speakers_list]

default_speaker_list = speakers_list  #

# Filtered lists based on dataset
festcat_speakers = [s for s in speakers_list if len(s) == 3]  #
google_speakers = [s for s in speakers_list if 3 < len(s) < 20]  #
commonvoice_speakers = [s for s in speakers_list if len(s) > 20]  #

DEFAULT_SPEAKER_ID = os.environ.get("DEFAULT_SPEAKER_ID", default="pau")
model_file = model_files[0]  # change this!!

model_path = os.path.join(os.getcwd(), model_file)
config_path = "config.json"

vocoder_path = None
vocoder_config_path = None

synthesizer = Synthesizer(
    model_path, config_path, speakers_path, None, vocoder_path, vocoder_config_path,
)


def get_phonetic_transcription(text: str):
    try:
        result = subprocess.run(
            ['espeak-ng', '--ipa', '-v', 'ca', text],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
            check=True
        )
        return result.stdout.strip()
    except subprocess.CalledProcessError as e:
        print(f"An error occurred: {e}")
        return None


def tts_inference(text: str, speaker_idx: str = None, use_denoise: int = 0):
    # synthesize
    if synthesizer is None:
        raise NameError("model not found")
    t1 = time.time()
    wavs = synthesizer.tts(text, speaker_idx)
    print(type(wavs))
    if use_denoise == 0:
        wavs_den = torch.Tensor(wavs).unsqueeze(0)  # one sample
        # wavs_den = denoise(wavs_den).tolist()
    else:
        wavs_den = wavs

    # return output
    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
        # wavs must be a list of integers
        synthesizer.save_wav(wavs, fp)
        t2 = time.time() - t1
        print(round(t2, 2))
        output_audio = fp.name

    with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
        # wavs must be a list of integers
        synthesizer.save_wav(wavs_den, fp)
        output_audio_den = fp.name

    return output_audio, output_audio_den


title = "🗣️ Catalan Multispeaker TTS Tester 🗣️"
description = """
1️⃣ Enter the text to synthesize.
2️⃣ Select a voice from the dropdown menu.
3️⃣ Enjoy!
"""


def submit_input(input_, speaker_id, use_dn):
    output_audio = None
    output_phonetic = None
    if input_ is not None and len(input_) < MAX_INPUT_TEXT_LEN:
        output_audio, output_audio_den = tts_inference(input_, speaker_id, use_dn)
        output_phonetic = get_phonetic_transcription(input_)
    else:
        gr.Warning(f"Your text exceeds the {MAX_INPUT_TEXT_LEN}-character limit.")
    return output_audio, output_audio_den, output_phonetic


def change_interactive(text):
    input_state = text
    if input_state.strip() != "":
        return gr.update(interactive=True)
    else:
        return gr.update(interactive=False)


def clean():
    return (
        None,
        None,
    )


with gr.Blocks(**AinaGradioTheme().get_kwargs()) as app:
    gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{title}</h1>")
    gr.Markdown(description)

    with gr.Row(equal_height=False):

        with gr.Column(variant='panel'):
            input_ = gr.Textbox(
                label="Text",
                value="Introdueix el text a sintetitzar.",
                lines=4
            )

            dataset = gr.Radio(["All", "Festcat", "Google TTS", "CommonVoice"], label="Speakers Dataset",
                               value="All")


            def update_speaker_list(dataset):
                print("Updating speaker list based on dataset:", dataset)
                if dataset == "Festcat":
                    current_speakers = festcat_speakers
                elif dataset == "Google TTS":
                    current_speakers = google_speakers
                elif dataset == "CommonVoice":
                    current_speakers = commonvoice_speakers
                else:
                    current_speakers = speakers_list

                return gr.update(choices=current_speakers, value=current_speakers[0])


            speaker_id = gr.Dropdown(label="Select a voice", choices=speakers_list, value=DEFAULT_SPEAKER_ID,
                                     interactive=True)
            dataset.change(fn=update_speaker_list, inputs=dataset, outputs=speaker_id)

            # model = gr.Dropdown(label="Select a model", choices=model_files, value=DEFAULT_MODEL_FILE_NAME)
            with gr.Row():
                clear_btn = gr.ClearButton(value='Clean', components=[input_])
                # clear_btn = gr.Button(
                #     "Clean",
                # )
                submit_btn = gr.Button(
                    "Submit",
                    variant="primary",
                )
                use_denoise = gr.Radio(choices=[("Yes", 0), ("No", 1)], value=0)
        with gr.Column(variant='panel'):
            output_audio = gr.Audio(label="Output", type="filepath", autoplay=True, show_share_button=False)
            output_audio_den = gr.Audio(label="Output denoised", type="filepath", autoplay=False,
                                        show_share_button=False)

            output_phonetic = gr.Textbox(label="Phonetic Transcription", readonly=True)

    for button in [submit_btn]:  # clear_btn
        input_.change(fn=change_interactive, inputs=[input_], outputs=button)

    # clear_btn.click(fn=clean, inputs=[], outputs=[input_, output_audio, output_phonetic], queue=False)
    submit_btn.click(fn=submit_input, inputs=[input_, speaker_id, use_denoise], outputs=[output_audio,
                                                                                         output_audio_den,
                                                                                         output_phonetic])

app.queue(concurrency_count=1, api_open=False)
app.launch(show_api=False, server_name="0.0.0.0", server_port=7860)