Spaces:
Runtime error
Runtime error
File size: 7,057 Bytes
9a5d905 b0910d2 be30125 9a5d905 b244f47 c8797aa 9a5d905 c8797aa 9a5d905 c8797aa 9a5d905 c8797aa 9a5d905 0860c4d 9a5d905 0860c4d 9a5d905 0860c4d 9a5d905 c8797aa 9a5d905 c8797aa 9a5d905 1476fa2 9a5d905 9e92141 9a5d905 0860c4d 9a5d905 0860c4d 9a5d905 c8797aa 9a5d905 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import tempfile
import subprocess
import time
from typing import Optional
from AinaTheme import AinaGradioTheme
import gradio as gr
import numpy as np
import torch
import os
from TTS.utils.synthesizer import Synthesizer
from dotenv import load_dotenv
torch.manual_seed(0)
np.random.seed(0)
import json
from copy import deepcopy
import numpy as np
import torch
import torchaudio
import torchaudio.transforms as T
import random
random.seed(0)
torch.manual_seed(0)
np.random.seed(0)
SAMPLE_RATE = 8000
#############################################################################################################
load_dotenv()
MAX_INPUT_TEXT_LEN = int(os.environ.get("MAX_INPUT_TEXT_LEN", default=500))
# Dynamically read model files, exclude 'speakers.pth'
model_files = [f for f in os.listdir(os.getcwd()) if f.endswith('.pth') and f != 'speakers.pth']
# model_files = [f for f in os.listdir(os.path.join(os.getcwd(), 'checkpoints')) if f.endswith('.pth')]
# model_files.sort(key=lambda x: os.path.getmtime(os.path.join(os.getcwd(), x)), reverse=True)
speakers_path = "speakers.pth"
speakers_list = torch.load(speakers_path)
speakers_list = list(speakers_list.keys())
speakers_list = [speaker for speaker in speakers_list]
default_speaker_list = speakers_list #
# Filtered lists based on dataset
festcat_speakers = [s for s in speakers_list if len(s) == 3] #
google_speakers = [s for s in speakers_list if 3 < len(s) < 20] #
commonvoice_speakers = [s for s in speakers_list if len(s) > 20] #
DEFAULT_SPEAKER_ID = os.environ.get("DEFAULT_SPEAKER_ID", default="pau")
DEFAULT_CHECKPOINT = os.environ.get("DEFAULT_CHECKPOINT", default=model_files[0])
# model_file = model_files[0] # change this!!
# model_path = os.path.join(os.getcwd(), model_file)
# config_path = os.path.join(os.getcwd(), "config.json")
vocoder_path = None
vocoder_config_path = None
# synthesizer = Synthesizer(
# model_path, config_path, speakers_path, None, vocoder_path, vocoder_config_path,
# )
def get_phonetic_transcription(text: str):
try:
result = subprocess.run(
['espeak-ng', '--ipa', '-v', 'ca', text],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
check=True
)
return result.stdout.strip()
except subprocess.CalledProcessError as e:
print(f"An error occurred: {e}")
return None
def tts_inference(text: str, speaker_idx: str = None, model_file: str=None):
model_path = os.path.join(os.getcwd(), model_file)
speakers_file_path = "speakers.pth"
config_path = "config.json"
vocoder_path = None
vocoder_config_path = None
synthesizer = Synthesizer(model_path, config_path, speakers_path, None,
vocoder_path, vocoder_config_path)
# synthesize
if synthesizer is None:
raise NameError("model not found")
t1 = time.time()
wavs = synthesizer.tts(text, speaker_idx)
# print(type(wavs))
wavs_den = wavs
# return output
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
# wavs must be a list of integers
synthesizer.save_wav(wavs_den, fp)
t2 = time.time() - t1
print(round(t2, 2))
output_audio = fp.name
return output_audio
title = "🗣️ Catalan Multispeaker TTS Tester 🗣️"
description = """
1️⃣ Enter the text to synthesize.
2️⃣ Select a voice from the dropdown menu.
3️⃣ Enjoy!
"""
def submit_input(input_, speaker_id, model_chkpt):
output_audio = None
output_phonetic = None
if input_ is not None and len(input_) < MAX_INPUT_TEXT_LEN:
output_audio = tts_inference(input_, speaker_id, model_chkpt)
output_phonetic = get_phonetic_transcription(input_)
else:
gr.Warning(f"Your text exceeds the {MAX_INPUT_TEXT_LEN}-character limit.")
return output_audio, output_phonetic
def change_interactive(text):
input_state = text
if input_state.strip() != "":
return gr.update(interactive=True)
else:
return gr.update(interactive=False)
def clean():
return (
None,
None,
)
with gr.Blocks(**AinaGradioTheme().get_kwargs()) as app:
gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{title}</h1>")
gr.Markdown(description)
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
input_ = gr.Textbox(
label="Text",
value="Introdueix el text a sintetitzar.",
lines=4
)
dataset = gr.Radio(["All", "Festcat", "Google TTS", "CommonVoice"], label="Speakers Dataset",
value="All")
def update_speaker_list(dataset):
print("Updating speaker list based on dataset:", dataset)
if dataset == "Festcat":
current_speakers = festcat_speakers
elif dataset == "Google TTS":
current_speakers = google_speakers
elif dataset == "CommonVoice":
current_speakers = commonvoice_speakers
else:
current_speakers = speakers_list
return gr.update(choices=current_speakers, value=current_speakers[0])
speaker_id = gr.Dropdown(label="Select a voice", choices=speakers_list, value=DEFAULT_SPEAKER_ID,
interactive=True)
dataset.change(fn=update_speaker_list, inputs=dataset, outputs=speaker_id)
model_chkpt = gr.Dropdown(label="Select a checkpoint", choices=model_files, value=DEFAULT_CHECKPOINT, interactive=True)
# model = gr.Dropdown(label="Select a model", choices=model_files, value=DEFAULT_MODEL_FILE_NAME)
with gr.Row():
clear_btn = gr.ClearButton(value='Clean', components=[input_])
# clear_btn = gr.Button(
# "Clean",
# )
submit_btn = gr.Button(
"Submit",
variant="primary",
)
# use_denoise = gr.Radio(choices=[("Yes", 0), ("No", 1)], value=0)
with gr.Column(variant='panel'):
output_audio = gr.Audio(label="Output", type="filepath", autoplay=True, show_share_button=False)
# output_audio_den = gr.Audio(label="Output denoised", type="filepath", autoplay=False, show_share_button=False)
output_phonetic = gr.Textbox(label="Phonetic Transcription", readonly=True)
for button in [submit_btn]: # clear_btn
input_.change(fn=change_interactive, inputs=[input_], outputs=button)
# clear_btn.click(fn=clean, inputs=[], outputs=[input_, output_audio, output_phonetic], queue=False)
submit_btn.click(fn=submit_input, inputs=[input_, speaker_id, model_chkpt], outputs=[output_audio, output_phonetic])
app.queue(concurrency_count=1, api_open=False)
app.launch(show_api=False, server_name="0.0.0.0", server_port=7860)
|