Spaces:
Sleeping
Sleeping
File size: 10,035 Bytes
c235080 92f4773 c235080 06b668f c235080 06b668f 92f4773 06b668f 92f4773 c235080 92f4773 06b668f 92f4773 c235080 92f4773 df72128 92f4773 06b668f 92f4773 06b668f 92f4773 06b668f 92f4773 06b668f 92f4773 ecc92e9 06b668f df72128 b1b106a 92f4773 758c2de 92f4773 758c2de 92f4773 758c2de 92f4773 06b668f 92f4773 06b668f 92f4773 06b668f 92f4773 b1b106a 06b668f 92f4773 19f2817 92f4773 06b668f 92f4773 06b668f 92f4773 06b668f 92f4773 06b668f 92f4773 06b668f 92f4773 06b668f 92f4773 06b668f 92f4773 df72128 b1b106a 92f4773 06b668f 92f4773 b1b106a 06b668f b1b106a 06b668f b1b106a df72128 b1b106a df72128 06b668f 19f2817 06b668f 92f4773 06b668f 92f4773 06b668f 92f4773 19f2817 92f4773 06b668f 19f2817 b1b106a 92f4773 b1b106a 92f4773 b1b106a 19f2817 b1b106a 19f2817 92f4773 19f2817 92f4773 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
from llama_cpp import Llama
import gradio as gr
import os
import requests
import time
# Percorso locale del modello - Qwen2.5-0.5B-Instruct VELOCE
MODEL_PATH = "qwen2.5-0.5b-instruct-q4_k_m.gguf"
MODEL_URL = "https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct-GGUF/resolve/main/qwen2.5-0.5b-instruct-q4_k_m.gguf"
def download_model():
"""Scarica il modello se non esiste già"""
if not os.path.exists(MODEL_PATH):
print("📥 Downloading Qwen2.5-0.5B-Instruct model...")
try:
response = requests.get(MODEL_URL, stream=True, timeout=300)
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0))
downloaded = 0
with open(MODEL_PATH, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
downloaded += len(chunk)
if total_size > 0:
progress = (downloaded / total_size) * 100
print(f"📥 Download progress: {progress:.1f}%")
# Verifica che il file sia completo
if os.path.getsize(MODEL_PATH) < 100000: # Almeno 100KB
print("❌ Downloaded file seems corrupted")
os.remove(MODEL_PATH)
return False
print("✅ Model downloaded successfully!")
return True
except Exception as e:
print(f"❌ Error downloading model: {e}")
if os.path.exists(MODEL_PATH):
os.remove(MODEL_PATH) # Rimuovi file corrotto
return False
else:
print("✅ Model already exists!")
# Verifica che il file esistente sia valido
if os.path.getsize(MODEL_PATH) < 100000:
print("❌ Existing file seems corrupted, re-downloading...")
os.remove(MODEL_PATH)
return download_model() # Riprova
return True
# Scarica il modello
model_loaded = download_model()
llm = None # Inizializza a None
if model_loaded:
# Inizializza il modello SUPER OTTIMIZZATO con Qwen2.5-0.5B
try:
llm = Llama(
model_path=MODEL_PATH,
n_ctx=2048, # Aumentato grazie al modello più piccolo
n_threads=4, # Più thread possibili con modello piccolo
n_batch=256, # Batch size ottimizzato
use_mlock=False, # Disabilitato per HF Free
verbose=False,
n_gpu_layers=0,
use_mmap=True, # Usa memory mapping per efficienza
low_vram=True, # Modalità low memory
rope_scaling_type=1, # Ottimizzazione RoPE
rope_freq_base=10000.0
)
print("✅ Qwen2.5-0.5B Model loaded successfully!")
except Exception as e:
print(f"❌ Error loading model: {e}")
llm = None
else:
print("❌ Model not available, using fallback responses")
# System prompt OTTIMIZZATO per Qwen2.5
system_prompt = """<|im_start|>system
You are an expert D&D Dungeon Master. Create immersive, engaging adventures with vivid descriptions. Always end your responses with a question or choice for the player. Keep responses concise but atmospheric.
<|im_end|>"""
def generate_random_opening():
"""Genera un inizio casuale per l'avventura usando l'AI"""
if llm is None:
# Fallback solo se il modello non è disponibile
import random
openings = [
"You enter a torch-lit dungeon. Water drips from ancient stones. A passage splits left and right. Which way?",
"You're in a misty forest clearing. An old well sits in the center, rope disappearing into darkness. Investigate?",
"The tavern door creaks open. Hooded figures look up from their ale. The barkeep waves you over. Approach?"
]
return f"🌟 **New Adventure!** 🌟\n\n{random.choice(openings)}"
try:
# Prompt ottimizzato per Qwen2.5
opening_prompt = f"""{system_prompt}
<|im_start|>user
Generate a creative D&D adventure opening in 2-3 sentences. Set an intriguing scene and end with a question for the player.
<|im_end|>
<|im_start|>assistant"""
output = llm(
opening_prompt,
max_tokens=80, # Leggermente più alto per qualità
temperature=0.8,
top_p=0.9,
repeat_penalty=1.1,
stop=["<|im_end|>", "<|im_start|>", "User:", "Player:"]
)
opening = output["choices"][0]["text"].strip()
# Assicurati che finisca con una domanda
if not opening.endswith('?'):
opening += " What do you do?"
return f"🌟 **New Adventure!** 🌟\n\n{opening}"
except Exception as e:
print(f"Error generating opening: {e}")
return f"🌟 **New Adventure!** 🌟\n\nYou find yourself in a mysterious place. Strange things are happening. What do you do?"
chat_history = []
def generate_dm_response_with_timeout(message, timeout=30):
"""Genera risposta con timeout ridotto per velocità"""
if llm is None:
# Fallback responses se il modello non è disponibile
import random
fallbacks = [
"The path ahead is unclear. What's your next move?",
"You hear footsteps approaching. How do you react?",
"A mysterious door appears before you. Do you open it?",
"The ground trembles slightly. What do you do?",
"You find a strange artifact. Examine it closely?"
]
return random.choice(fallbacks)
try:
# Prompt ottimizzato per Qwen2.5 con chat template
prompt = f"{system_prompt}\n"
# Mantieni più contesto grazie al modello efficiente
context_turns = min(len(chat_history), 3) # Ultimi 3 turni
for turn in chat_history[-context_turns:]:
prompt += f"<|im_start|>user\n{turn['user']}\n<|im_end|>\n"
prompt += f"<|im_start|>assistant\n{turn['ai']}\n<|im_end|>\n"
prompt += f"<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n"
# Parametri ottimizzati per Qwen2.5-0.5B
start_time = time.time()
output = llm(
prompt,
max_tokens=100, # Aumentato per qualità migliore
stop=["<|im_end|>", "<|im_start|>", "User:", "Player:"],
temperature=0.7,
top_p=0.8,
repeat_penalty=1.2,
top_k=40,
min_p=0.1 # Miglior controllo qualità
)
# Verifica se ha impiegato troppo tempo
elapsed_time = time.time() - start_time
if elapsed_time > timeout:
print(f"Response took {elapsed_time:.1f}s (timeout: {timeout}s)")
return "Time passes quickly. What do you do next?"
text = output["choices"][0]["text"].strip()
# Assicurati che ci sia sempre una domanda
if not text.endswith(('?', '!', '.')):
text += "?"
print(f"✅ Response generated in {elapsed_time:.1f}s")
return text
except Exception as e:
print(f"Error generating response: {e}")
return "Something unexpected happens. What do you do next?"
def chat(message, history):
global chat_history
if not message.strip():
return "You stand there, unsure. What would you like to do?"
# Genera risposta del DM con timeout ridotto
dm_response = generate_dm_response_with_timeout(message)
# Aggiorna cronologia (mantieni più turni grazie al modello efficiente)
chat_history.append({"user": message, "ai": dm_response})
if len(chat_history) > 5: # Mantieni 5 turni invece di 2
chat_history = chat_history[-5:]
return dm_response
def reset():
global chat_history
chat_history = []
return generate_random_opening()
# Crea l'interfaccia SUPER OTTIMIZZATA
with gr.Blocks(title="Infinite Dungeon - Lightning Fast", theme=gr.themes.Soft()) as demo:
gr.Markdown("# ⚡ Infinite Dungeon - Lightning Fast")
gr.Markdown("*Powered by Qwen2.5-0.5B - Optimized for 5-15 second responses*")
gr.Markdown("🚀 **Super fast AI D&D with perfect memory retention**")
# Inizializza la chat
chatbot = gr.Chatbot(
value=[(None, "⚡ **Lightning Fast Adventure Ready!** ⚡\n\nPress 'New Adventure' to begin your quest!")],
height=400,
show_label=False
)
msg = gr.Textbox(
label="Your action",
placeholder="What do you do? (e.g., 'I search the room', 'I attack the orc', 'I cast a spell')",
max_lines=2
)
with gr.Row():
submit = gr.Button("⚔️ Act", variant="primary", size="lg")
reset_btn = gr.Button("🔄 New Adventure", variant="secondary")
gr.Markdown("⚡ **Ultra-fast responses**: 5-15 seconds | 🧠 **Perfect memory**: Never forgets your adventure!")
# Funzione per gestire la chat
def respond(message, chat_history_ui):
if not message.strip():
return "", chat_history_ui
# Mostra messaggio di caricamento
chat_history_ui.append((message, "🎲 *The DM is thinking...*"))
# Genera risposta
bot_message = chat(message, chat_history_ui)
chat_history_ui[-1] = (message, bot_message)
return "", chat_history_ui
# Funzione per il reset
def reset_chat():
new_opening = reset()
return [(None, new_opening)]
# Collegamenti eventi
msg.submit(respond, [msg, chatbot], [msg, chatbot])
submit.click(respond, [msg, chatbot], [msg, chatbot])
reset_btn.click(reset_chat, outputs=[chatbot])
# Avvia l'app
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |