File size: 12,902 Bytes
9c8c4f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
"""

App principale Streamlit per l'anonimizzazione documenti.

"""

import streamlit as st
import json
import pandas as pd
from ui_components import (
    setup_page_config, display_sidebar, display_entity_editor,
    display_file_preview, display_analysis_results, display_crewai_result,
    display_progress_metrics, display_examples_section, create_download_button
)
from utils import (
    init_session_state, process_uploaded_files, run_anonymization,
    run_ai_analysis, build_rag_knowledge_base, export_results_json,
    get_confirmed_docs_count, reset_document_state, add_chat_message,
    add_crewai_result, clear_crewai_history
)

def main():
    """Funzione principale dell'app"""
    
    # Setup
    setup_page_config()
    init_session_state()
    
    # Header
    st.title("πŸ”’ Anonimizzatore Documenti con NER, RAG e CrewAI")
    st.markdown("---")
    
    # Sidebar
    display_sidebar()
    
    # Main tabs
    tab1, tab2, tab3, tab4, tab5 = st.tabs([
        "πŸ“€ Upload", 
        "πŸ” Anonimizzazione", 
        "πŸ“Š Analisi", 
        "πŸ’¬ Chatbot RAG", 
        "πŸ€– CrewAI"
    ])
    
    # TAB 1: Upload
    with tab1:
        upload_tab()
    
    # TAB 2: Anonimizzazione
    with tab2:
        anonymization_tab()
    
    # TAB 3: Analisi
    with tab3:
        analysis_tab()
    
    # TAB 4: RAG
    with tab4:
        rag_tab()
    
    # TAB 5: CrewAI
    with tab5:
        crewai_tab()

def upload_tab():
    """Tab per upload file"""
    st.header("πŸ“€ Carica Documenti")
    
    uploaded_files = st.file_uploader(
        "Carica uno o piΓΉ file .txt",
        type=['txt'],
        accept_multiple_files=True,
        help="Seleziona i file di testo da anonimizzare"
    )
    
    if uploaded_files:
        if process_uploaded_files(uploaded_files):
            st.success(f"Caricati {len(uploaded_files)} file")
            st.rerun()
        else:
            st.info("Nessun nuovo file caricato.")
        
        # Mostra anteprima
        st.subheader("πŸ“„ File caricati")
        for filename, file_data in st.session_state.uploaded_files.items():
            display_file_preview(filename, file_data['content'])

def anonymization_tab():
    """Tab per anonimizzazione"""
    st.header("πŸ” Anonimizzazione e Revisione")
    
    if not st.session_state.uploaded_files:
        st.warning("⚠️ Carica prima alcuni documenti nella tab 'Upload'")
        return
    
    # Bottone anonimizzazione
    if st.button("πŸš€ Avvia Anonimizzazione", type="primary"):
        run_anonymization()
        st.rerun()
    
    # Mostra documenti anonimizzati
    if st.session_state.anonymized_docs:
        st.subheader("πŸ“ Revisiona Documenti Anonimizzati")
        
        for filename, doc_data in st.session_state.anonymized_docs.items():
            with st.expander(
                f"πŸ“„ {filename} {'βœ…' if doc_data['confirmed'] else '⏳'}", 
                expanded=not doc_data['confirmed']
            ):
                
                col1, col2 = st.columns(2)
                
                # Testo originale
                with col1:
                    st.write("**Testo Originale:**")
                    preview = doc_data['original'][:300]
                    if len(doc_data['original']) > 300:
                        preview += "..."
                    
                    st.text_area(
                        "Originale",
                        value=preview,
                        height=200,
                        disabled=True,
                        key=f"orig_{filename}",
                        label_visibility="collapsed"
                    )
                
                # Testo anonimizzato
                with col2:
                    st.write("**Testo Anonimizzato:**")
                    edited_text = st.text_area(
                        "Anonimizzato (modificabile)",
                        value=doc_data['anonymized'],
                        height=200,
                        key=f"anon_{filename}",
                        label_visibility="collapsed"
                    )
                    
                    # Aggiorna se modificato
                    if edited_text != doc_data['anonymized']:
                        st.session_state.anonymized_docs[filename]['anonymized'] = edited_text
                
                # Editor entitΓ 
                updated_entities = display_entity_editor(dict(doc_data['entities']), filename)
                
                # Bottoni azione
                col_confirm, col_reset = st.columns(2)
                
                with col_confirm:
                    if st.button(f"βœ… Conferma {filename}", key=f"confirm_{filename}"):
                        st.session_state.anonymized_docs[filename]['confirmed'] = True
                        st.session_state.anonymized_docs[filename]['entities'] = updated_entities
                        st.success(f"βœ… {filename} confermato!")
                        st.session_state.vector_store_built = False
                        st.rerun()
                
                with col_reset:
                    if st.button(f"πŸ”„ Reset {filename}", key=f"reset_{filename}"):
                        reset_document_state(filename)
                        st.rerun()
        
        # Statistiche progresso
        display_progress_metrics()

def analysis_tab():
    """Tab per analisi AI"""
    st.header("πŸ“Š Analisi AI")
    
    confirmed_docs = {k: v for k, v in st.session_state.anonymized_docs.items() 
                     if v.get('confirmed', False)}
    
    if not confirmed_docs:
        st.warning("⚠️ Conferma prima alcuni documenti anonimizzati")
        return
    
    st.write(f"Documenti confermati pronti: **{len(confirmed_docs)}**")
    
    if st.button("πŸ€– Avvia Analisi AI", type="primary"):
        run_ai_analysis()
    
    # Mostra risultati
    if st.session_state.processed_docs:
        st.subheader("πŸ“‹ Risultati Analisi")
        
        for filename, result in st.session_state.processed_docs.items():
            display_analysis_results(filename, result)
            
            # Download JSON
            result_json = export_results_json({
                'filename': filename,
                'anonymized_text': result['anonymized_text'],
                'analysis': result['analysis'],
                'entities': result['entities'],
                'entities_count': result['entities_count']
            }, f"analisi_{filename}")
            
            create_download_button(
                result_json,
                f"analisi_{filename}.json",
                f"πŸ’Ύ Scarica {filename}",
                f"download_{filename}"
            )

def rag_tab():
    """Tab per RAG chatbot"""
    st.header("πŸ’¬ Chatta con i Documenti")
    
    confirmed_docs = {k: v for k, v in st.session_state.anonymized_docs.items() 
                     if v.get('confirmed', False)}
    
    if not confirmed_docs:
        st.warning("⚠️ Carica e conferma documenti per abilitare il chatbot")
        return
    
    # Costruisci knowledge base
    if build_rag_knowledge_base():
        st.info(f"Chatbot pronto per {len(confirmed_docs)} documenti")
        
        # Mostra cronologia chat
        for message in st.session_state.chat_history:
            with st.chat_message(message["role"]):
                st.markdown(message["content"])
        
        # Input utente
        if prompt := st.chat_input("Fai una domanda sui documenti..."):
            # Aggiungi messaggio utente
            add_chat_message("user", prompt)
            with st.chat_message("user"):
                st.markdown(prompt)
            
            # Genera risposta
            with st.chat_message("assistant"):
                with st.spinner("Generando risposta..."):
                    response = st.session_state.rag_chatbot.answer_question(prompt)
                    st.markdown(response)
            
            # Aggiungi risposta
            add_chat_message("assistant", response)
    else:
        st.error("Impossibile costruire knowledge base. Verifica configurazione Azure.")

def crewai_tab():
    """Tab per CrewAI"""
    st.header("πŸ€– Analisi Multi-Agente CrewAI")
    
    confirmed_docs = {k: v for k, v in st.session_state.anonymized_docs.items() 
                     if v.get('confirmed', False)}
    
    if not confirmed_docs:
        st.warning("⚠️ Conferma documenti per abilitare CrewAI")
        return
    
    if not st.session_state.crewai_manager.agents:
        st.error("❌ CrewAI non configurato. Verifica Azure OpenAI.")
        return
    
    # Assicura knowledge base
    build_rag_knowledge_base()
    
    st.success(f"🎯 CrewAI pronto per {len(confirmed_docs)} documenti")
    
    # Configurazione analisi
    st.subheader("βš™οΈ Configurazione Analisi")
    
    col1, col2 = st.columns(2)
    
    with col1:
        analysis_type = st.selectbox(
            "Tipo di Analisi",
            options=["comprehensive", "document", "sentiment", "rag", "custom"],
            format_func=lambda x: {
                "comprehensive": "πŸ” Analisi Comprensiva",
                "document": "πŸ“„ Analisi Documentale",
                "sentiment": "😊 Sentiment Analysis",
                "rag": "πŸ” Query RAG Avanzata",
                "custom": "βš™οΈ Personalizzata"
            }[x]
        )
    
    with col2:
        if analysis_type == "custom":
            selected_agents = st.multiselect(
                "Agenti da utilizzare",
                options=list(st.session_state.crewai_manager.agents.keys()),
                default=["strategy_coordinator"],
                format_func=lambda x: {
                    "document_analyst": "πŸ“„ Document Analyst",
                    "rag_specialist": "πŸ” RAG Specialist", 
                    "strategy_coordinator": "🎯 Strategy Coordinator",
                    "sentiment_analyst": "😊 Sentiment Analyst"
                }.get(x, x)
            )
        else:
            selected_agents = []
    
    # Query input
    st.subheader("❓ Query per l'Analisi")
    query_input = st.text_area(
        "Inserisci la tua domanda:",
        placeholder="Es: Analizza i temi principali e identifica rischi operativi...",
        height=100
    )
    
    # Istruzioni personalizzate
    if analysis_type == "custom":
        custom_instructions = st.text_area(
            "Istruzioni Personalizzate:",
            placeholder="Istruzioni specifiche per gli agenti...",
            height=80
        )
    else:
        custom_instructions = ""
    
    # Bottoni
    col_analyze, col_clear = st.columns(2)
    
    with col_analyze:
        if st.button("πŸš€ Avvia Analisi CrewAI", type="primary", disabled=not query_input.strip()):
            if analysis_type == "custom" and not selected_agents:
                st.error("Seleziona almeno un agente")
            else:
                # Esegui analisi
                if analysis_type == "custom":
                    result = st.session_state.crewai_manager.create_custom_task(
                        query_input, selected_agents, custom_instructions
                    )
                else:
                    result = st.session_state.crewai_manager.create_analysis_task(
                        query_input, analysis_type
                    )
                
                # Salva risultato
                add_crewai_result(query_input, analysis_type, result, selected_agents)
                st.success("βœ… Analisi CrewAI completata!")
    
    with col_clear:
        if st.button("πŸ—‘οΈ Pulisci Cronologia"):
            clear_crewai_history()
            st.success("Cronologia pulita!")
            st.rerun()
    
    # Mostra risultati
    if st.session_state.crewai_history:
        st.subheader("πŸ“‹ Risultati Analisi CrewAI")
        
        for i, analysis in enumerate(reversed(st.session_state.crewai_history)):
            display_crewai_result(analysis, len(st.session_state.crewai_history) - i)
            
            # Download
            result_json = export_results_json(analysis, f"crewai_analysis_{i}")
            create_download_button(
                result_json,
                f"crewai_analysis_{analysis['timestamp'].replace(':', '-').replace(' ', '_')}.json",
                "πŸ’Ύ Scarica Risultato",
                f"download_crewai_{i}"
            )
    
    # Esempi
    display_examples_section()

if __name__ == "__main__":
    main()