Spaces:
Runtime error
Runtime error
File size: 7,987 Bytes
f844f44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import matplotlib
matplotlib.use('Agg')
import sys
import yaml
from argparse import ArgumentParser
from tqdm import tqdm
from scipy.spatial import ConvexHull
import numpy as np
import imageio
from skimage.transform import resize
from skimage import img_as_ubyte
import torch
from modules.inpainting_network import InpaintingNetwork
from modules.keypoint_detector import KPDetector
from modules.dense_motion import DenseMotionNetwork
from modules.avd_network import AVDNetwork
if sys.version_info[0] < 3:
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.9")
def relative_kp(kp_source, kp_driving, kp_driving_initial):
source_area = ConvexHull(kp_source['fg_kp'][0].data.cpu().numpy()).volume
driving_area = ConvexHull(kp_driving_initial['fg_kp'][0].data.cpu().numpy()).volume
adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
kp_new = {k: v for k, v in kp_driving.items()}
kp_value_diff = (kp_driving['fg_kp'] - kp_driving_initial['fg_kp'])
kp_value_diff *= adapt_movement_scale
kp_new['fg_kp'] = kp_value_diff + kp_source['fg_kp']
return kp_new
def load_checkpoints(config_path, checkpoint_path, device):
with open(config_path) as f:
config = yaml.load(f)
inpainting = InpaintingNetwork(**config['model_params']['generator_params'],
**config['model_params']['common_params'])
kp_detector = KPDetector(**config['model_params']['common_params'])
dense_motion_network = DenseMotionNetwork(**config['model_params']['common_params'],
**config['model_params']['dense_motion_params'])
avd_network = AVDNetwork(num_tps=config['model_params']['common_params']['num_tps'],
**config['model_params']['avd_network_params'])
kp_detector.to(device)
dense_motion_network.to(device)
inpainting.to(device)
avd_network.to(device)
checkpoint = torch.load(checkpoint_path, map_location=device)
inpainting.load_state_dict(checkpoint['inpainting_network'])
kp_detector.load_state_dict(checkpoint['kp_detector'])
dense_motion_network.load_state_dict(checkpoint['dense_motion_network'])
if 'avd_network' in checkpoint:
avd_network.load_state_dict(checkpoint['avd_network'])
inpainting.eval()
kp_detector.eval()
dense_motion_network.eval()
avd_network.eval()
return inpainting, kp_detector, dense_motion_network, avd_network
def make_animation(source_image, driving_video, inpainting_network, kp_detector, dense_motion_network, avd_network, device, mode = 'relative'):
assert mode in ['standard', 'relative', 'avd']
with torch.no_grad():
predictions = []
source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
source = source.to(device)
driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3).to(device)
kp_source = kp_detector(source)
kp_driving_initial = kp_detector(driving[:, :, 0])
for frame_idx in tqdm(range(driving.shape[2])):
driving_frame = driving[:, :, frame_idx]
driving_frame = driving_frame.to(device)
kp_driving = kp_detector(driving_frame)
if mode == 'standard':
kp_norm = kp_driving
elif mode=='relative':
kp_norm = relative_kp(kp_source=kp_source, kp_driving=kp_driving,
kp_driving_initial=kp_driving_initial)
elif mode == 'avd':
kp_norm = avd_network(kp_source, kp_driving)
dense_motion = dense_motion_network(source_image=source, kp_driving=kp_norm,
kp_source=kp_source, bg_param = None,
dropout_flag = False)
out = inpainting_network(source, dense_motion)
predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
return predictions
def find_best_frame(source, driving, cpu):
import face_alignment
def normalize_kp(kp):
kp = kp - kp.mean(axis=0, keepdims=True)
area = ConvexHull(kp[:, :2]).volume
area = np.sqrt(area)
kp[:, :2] = kp[:, :2] / area
return kp
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True,
device= 'cpu' if cpu else 'cuda')
kp_source = fa.get_landmarks(255 * source)[0]
kp_source = normalize_kp(kp_source)
norm = float('inf')
frame_num = 0
for i, image in tqdm(enumerate(driving)):
kp_driving = fa.get_landmarks(255 * image)[0]
kp_driving = normalize_kp(kp_driving)
new_norm = (np.abs(kp_source - kp_driving) ** 2).sum()
if new_norm < norm:
norm = new_norm
frame_num = i
return frame_num
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--config", required=True, help="path to config")
parser.add_argument("--checkpoint", default='checkpoints/vox.pth.tar', help="path to checkpoint to restore")
parser.add_argument("--source_image", default='./assets/source.png', help="path to source image")
parser.add_argument("--driving_video", default='./assets/driving.mp4', help="path to driving video")
parser.add_argument("--result_video", default='./result.mp4', help="path to output")
parser.add_argument("--img_shape", default="256,256", type=lambda x: list(map(int, x.split(','))),
help='Shape of image, that the model was trained on.')
parser.add_argument("--mode", default='relative', choices=['standard', 'relative', 'avd'], help="Animate mode: ['standard', 'relative', 'avd'], when use the relative mode to animate a face, use '--find_best_frame' can get better quality result")
parser.add_argument("--find_best_frame", dest="find_best_frame", action="store_true",
help="Generate from the frame that is the most alligned with source. (Only for faces, requires face_aligment lib)")
parser.add_argument("--cpu", dest="cpu", action="store_true", help="cpu mode.")
opt = parser.parse_args()
source_image = imageio.imread(opt.source_image)
reader = imageio.get_reader(opt.driving_video)
fps = reader.get_meta_data()['fps']
driving_video = []
try:
for im in reader:
driving_video.append(im)
except RuntimeError:
pass
reader.close()
if opt.cpu:
device = torch.device('cpu')
else:
device = torch.device('cuda')
source_image = resize(source_image, opt.img_shape)[..., :3]
driving_video = [resize(frame, opt.img_shape)[..., :3] for frame in driving_video]
inpainting, kp_detector, dense_motion_network, avd_network = load_checkpoints(config_path = opt.config, checkpoint_path = opt.checkpoint, device = device)
if opt.find_best_frame:
i = find_best_frame(source_image, driving_video, opt.cpu)
print ("Best frame: " + str(i))
driving_forward = driving_video[i:]
driving_backward = driving_video[:(i+1)][::-1]
predictions_forward = make_animation(source_image, driving_forward, inpainting, kp_detector, dense_motion_network, avd_network, device = device, mode = opt.mode)
predictions_backward = make_animation(source_image, driving_backward, inpainting, kp_detector, dense_motion_network, avd_network, device = device, mode = opt.mode)
predictions = predictions_backward[::-1] + predictions_forward[1:]
else:
predictions = make_animation(source_image, driving_video, inpainting, kp_detector, dense_motion_network, avd_network, device = device, mode = opt.mode)
imageio.mimsave(opt.result_video, [img_as_ubyte(frame) for frame in predictions], fps=fps)
|