File size: 9,324 Bytes
72935b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import time
import sys
import streamlit as st
import string
import os
from io import StringIO
import pdb
import json
import torch
import requests
import socket
from streamlit_image_select import image_select
use_case = {"1":"Image background removal","2":"Masking foreground for downstream inpainting task"}
mask_types = {"blur - blurs background":"blur","map - makes the foreground white and rest black ":"map","rgba - makes background white":"rgba","green - makes the background green":"green"}
APP_NAME = "hf/salient_object_detection"
INFO_URL = "https://www.taskswithcode.com/stats/"
TMP_DIR="tmp_dir"
TMP_SEED = 1
def get_views(action):
ret_val = 0
#return "{:,}".format(ret_val)
hostname = socket.gethostname()
ip_address = socket.gethostbyname(hostname)
if ("view_count" not in st.session_state):
try:
app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
res = requests.post(INFO_URL, json = app_info).json()
print(res)
data = res["count"]
except:
data = 0
ret_val = data
st.session_state["view_count"] = data
else:
ret_val = st.session_state["view_count"]
if (action != "init"):
app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
res = requests.post(INFO_URL, json = app_info).json()
return "{:,}".format(ret_val)
def construct_model_info_for_display(model_names):
options_arr = []
#markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/></div>"
markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Model evaluated </b><br/></div>"
markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>"
for node in model_names:
options_arr .append(node["name"])
if (node["mark"] == "True"):
markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"> • Model: <a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/> Code released by: <a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/> Model info: <a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a></div>"
if ("Note" in node):
markdown_str += f"<div style=\"font-size:16px; color: #a91212; text-align: left\"> {node['Note']}<a href=\'{node['alt_url']}\' target='_blank'>link</a></div>"
markdown_str += "<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"><br/></div>"
markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><b>Note:</b><br/>• Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not cached</div>"
markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><br/><a href=\'https://github.com/taskswithcode/salient_object_detection_app.git\' target='_blank'>Github code</a> for this app</div>"
return options_arr,markdown_str
def init_page():
st.set_page_config(page_title='TWC - State-of-the-art model salient object detection (visually dominant objects in an image)', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto',
menu_items={
'About': 'This app was created by taskswithcode. http://taskswithcode.com'
})
col,pad = st.columns([85,15])
with col:
st.image("long_form_logo_with_icon.png")
def run_test(config,input_file_name,display_area,uploaded_file,mask_type):
global TMP_SEED
display_area.text("Processing request...")
try:
if (uploaded_file is None):
file_data = open(input_file_name, "rb")
r = requests.post(config["SERVER_ADDRESS"], data={"mask":mask_type}, files={"test":file_data})
else:
file_data = uploaded_file.read()
file_name = f"{TMP_DIR}/{TMP_SEED}_{str(time.time()).replace('.','_')}_{uploaded_file.name}"
TMP_SEED += 1
with open(file_name,"wb") as fp:
fp.write(file_data)
file_data = open(file_name, "rb")
r = requests.post(config["SERVER_ADDRESS"], data={"mask":mask_type}, files={"test":file_data})
os.remove(file_name)
print("Servers response:",r.status_code,len(r.content))
if (r.status_code == 200):
size = "{:,}".format(len(r.content))
return {"response":r.content,"size":size}
else:
return {"error":f"API request failed {r.status_code}"}
except Exception as e:
st.error("Some error occurred during prediction" + str(e))
st.stop()
return {"error":f"Exception in performing salient object detection: {str(e)}"}
return {}
def display_results(results,response_info,mask):
main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
body_sent = []
download_data = {}
main_sent = main_sent + "\n" + '\n'.join(body_sent)
st.markdown(main_sent,unsafe_allow_html=True)
st.image(results["response"], caption=f'Output of salient object detection with mask: {mask}')
st.session_state["download_ready"] = results["response"]
get_views("submit")
def init_session():
print("Init session")
init_page()
st.session_state["model_name"] = "insprynet"
st.session_state["download_ready"] = None
st.session_state["model_name"] = "ss_test"
st.session_state["file_name"] = "default"
st.session_state["mask_type"] = "blur"
def app_main(app_mode,example_files,model_name_files,config_file):
init_session()
with open(example_files) as fp:
example_file_names = json.load(fp)
with open(model_name_files) as fp:
model_names = json.load(fp)
with open(config_file) as fp:
config = json.load(fp)
curr_use_case = use_case[app_mode].split(".")[0]
curr_use_case = use_case[app_mode].split(".")[0]
st.markdown("<h5 style='text-align: center;'>State-of-the-art model for salient object detection</h5>", unsafe_allow_html=True)
st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Use cases for salient object detection<br/> • {use_case['1']}<br/> • {use_case['2']}</div>", unsafe_allow_html=True)
st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views: {get_views('init')}</div>", unsafe_allow_html=True)
try:
with st.form('twc_form'):
step1_line = "Upload an image or choose an example image below"
uploaded_file = st.file_uploader(step1_line, type=["png","jpg","jpeg"])
selected_file_name = image_select("Select image", ["twc_samples/sample1.jpg", "twc_samples/sample2.jpg", "twc_samples/sample3.jpg", "twc_samples/sample4.jpg"])
st.write("")
mask_type = st.selectbox(label=f'Select type of masking',
options = list(dict.keys(mask_types)), index=0, key = "twc_mask_types")
mask_type = mask_types[mask_type]
st.write("")
submit_button = st.form_submit_button('Run')
options_arr,markdown_str = construct_model_info_for_display(model_names)
input_status_area = st.empty()
display_area = st.empty()
if submit_button:
start = time.time()
if uploaded_file is not None:
st.session_state["file_name"] = uploaded_file.name
else:
st.session_state["file_name"] = selected_file_name
st.session_state["mask_type"] = mask_type
display_area.empty()
results = run_test(config,st.session_state["file_name"],display_area,uploaded_file,mask_type)
with display_area.container():
if ("error" in results):
st.error(results["error"])
else:
device = 'GPU' if torch.cuda.is_available() else 'CPU'
response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for image size: {results['size']} bytes"
display_results(results,response_info,mask_type)
#st.json(results)
st.download_button(
label="Download results as png",
data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
disabled = False if st.session_state["download_ready"] != None else True,
file_name= (st.session_state["model_name"] + "_" + st.session_state["mask_type"] + "_" + '_'.join(st.session_state["file_name"].split(".")[:-1]) + ".png").replace("/","_"),
mime='image/png',
key ="download"
)
except Exception as e:
st.error("Some error occurred during loading" + str(e))
st.stop()
st.markdown(markdown_str, unsafe_allow_html=True)
if __name__ == "__main__":
app_main("1","sod_app_examples.json","sod_app_models.json","config.json")
|