File size: 17,262 Bytes
0fa63d6
 
b3b6a55
1a0dfbb
b3b6a55
 
 
 
 
 
 
 
 
 
0fa63d6
 
 
b82739e
0fa63d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
820759e
c1b2604
 
 
 
 
 
 
5708ed7
c1b2604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0018e73
 
 
 
 
 
820759e
0018e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c77a26
5cb96a1
c1b2604
 
 
 
 
 
 
5708ed7
c1b2604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb96a1
eb7660d
0fa63d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import torch
import numpy as np
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from diffusers import FlowMatchEulerDiscreteScheduler, AutoPipelineForImage2Image, FluxPipeline, FluxTransformer2DModel
from diffusers import StableDiffusion3Pipeline, AutoencoderKL, DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin, SD3LoraLoaderMixin
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
from typing import Any, Callable, Dict, List, Optional, Union
from PIL import Image
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps, FluxTransformer2DModel

from diffusers.utils import is_torch_xla_available

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False


# Constants for shift calculation
BASE_SEQ_LEN = 256
MAX_SEQ_LEN = 4096
BASE_SHIFT = 0.5
MAX_SHIFT = 1.2

# Helper functions
def calculate_timestep_shift(image_seq_len: int) -> float:
    """Calculates the timestep shift (mu) based on the image sequence length."""
    m = (MAX_SHIFT - BASE_SHIFT) / (MAX_SEQ_LEN - BASE_SEQ_LEN)
    b = BASE_SHIFT - m * BASE_SEQ_LEN
    mu = image_seq_len * m + b
    return mu

def prepare_timesteps(
    scheduler: FlowMatchEulerDiscreteScheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    mu: Optional[float] = None,
) -> (torch.Tensor, int):
    """Prepares the timesteps for the diffusion process."""
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")

    if timesteps is not None:
        scheduler.set_timesteps(timesteps=timesteps, device=device)
    elif sigmas is not None:
        scheduler.set_timesteps(sigmas=sigmas, device=device)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, mu=mu)

    timesteps = scheduler.timesteps
    num_inference_steps = len(timesteps)
    return timesteps, num_inference_steps

# FLUX pipeline function
class FluxWithCFGPipeline(StableDiffusion3Pipeline):
    def __init__(
        self,
        transformer: FluxTransformer2DModel,
        scheduler: FlowMatchEulerDiscreteScheduler,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        tokenizer_2: T5TokenizerFast,
        text_encoder_2: T5EncoderModel,
        tokenizer_3: None,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            text_encoder_3=None,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            tokenizer_3=None,
            transformer=transformer,
            scheduler=scheduler,
        )
        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 16
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.tokenizer_max_length = (
            self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
        )
        self.default_sample_size = 64

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        negative_prompt: Union[str, List[str]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        num_inference_steps: int = 4,
        timesteps: List[int] = None,
        guidance_scale: float = 3.5,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        max_sequence_length: int = 300,
    ):
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        # 1. Check inputs
        self.check_inputs(
            prompt,
            prompt_2,
            negative_prompt,
            height,
            width,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            max_sequence_length=max_sequence_length,
        )

        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = "cuda" if torch.cuda.is_available() else "cpu"

        # 3. Encode prompt
        lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
        prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )
        negative_prompt_embeds, negative_pooled_prompt_embeds, negative_text_ids = self.encode_prompt(
            prompt=negative_prompt,
            prompt_2=negative_prompt_2,
            prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=negative_pooled_prompt_embeds,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )
        
        # 4. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 4
        latents, latent_image_ids = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            negative_prompt_embeds.dtype,
            device,
            generator,
            latents,
        )
        
        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        image_seq_len = latents.shape[1]
        mu = calculate_timestep_shift(image_seq_len)
        timesteps, num_inference_steps = prepare_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            timesteps,
            sigmas,
            mu=mu,
        )
        self._num_timesteps = len(timesteps)

        # Handle guidance
        guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None

        # 6. Denoising loop
        for i, t in enumerate(timesteps):
            if self.interrupt:
                continue

            timestep = t.expand(latents.shape[0]).to(latents.dtype)

            noise_pred = self.transformer(
                hidden_states=latents,
                timestep=timestep / 1000,
                guidance=guidance,
                pooled_projections=pooled_prompt_embeds,
                encoder_hidden_states=prompt_embeds,
                txt_ids=text_ids,
                img_ids=latent_image_ids,
                joint_attention_kwargs=self.joint_attention_kwargs,
                return_dict=False,
            )[0]
            
            noise_pred_uncond = self.transformer(
                hidden_states=latents,
                timestep=timestep / 1000,
                guidance=guidance,
                pooled_projections=negative_pooled_prompt_embeds,
                encoder_hidden_states=negative_prompt_embeds,
                txt_ids=negative_text_ids,
                img_ids=latent_image_ids,
                joint_attention_kwargs=self.joint_attention_kwargs,
                return_dict=False,
            )[0]
            
            noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

            latents_dtype = latents.dtype
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
             # Yield intermediate result
            torch.cuda.empty_cache()

        # Final image
        return self._decode_latents_to_image(latents, height, width, output_type)
        self.maybe_free_model_hooks()
        torch.cuda.empty_cache()

    def _decode_latents_to_image(self, latents, height, width, output_type, vae=None):
        """Decodes the given latents into an image."""
        vae = vae or self.vae
        latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
        image = vae.decode(latents, return_dict=False)[0]
        return self.image_processor.postprocess(image, output_type=output_type)[0]
        
class FluxWithCFGPipeline(StableDiffusion3Pipeline):
    @torch.inference_mode()
    def __init__(
        self,
        transformer: FluxTransformer2DModel,
        scheduler: FlowMatchEulerDiscreteScheduler,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        tokenizer_2: T5TokenizerFast,
        text_encoder_2: T5EncoderModel,
        tokenizer_3: None,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            text_encoder_3=None,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            tokenizer_3=None,
            transformer=transformer,
            scheduler=scheduler,
        )
        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 16
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.tokenizer_max_length = (
            self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
        )
        self.default_sample_size = 64
    
    def generate_image(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        num_inference_steps: int = 4,
        timesteps: List[int] = None,
        guidance_scale: float = 3.5,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        max_sequence_length: int = 300,
    ):
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        # 1. Check inputs
        self.check_inputs(
            prompt,
            prompt_2,
            negative_prompt,
            height,
            width,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            max_sequence_length=max_sequence_length,
        )

        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = "cuda" if torch.cuda.is_available() else "cpu"

        # 3. Encode prompt
        lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
        prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )
        negative_prompt_embeds, negative_pooled_prompt_embeds, negative_text_ids = self.encode_prompt(
            prompt=negative_prompt,
            prompt_2=negative_prompt_2,
            prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=negative_pooled_prompt_embeds,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )
        
        # 4. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 4
        latents, latent_image_ids = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            negative_prompt_embeds.dtype,
            device,
            generator,
            latents,
        )
        
        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        image_seq_len = latents.shape[1]
        mu = calculate_timestep_shift(image_seq_len)
        timesteps, num_inference_steps = prepare_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            timesteps,
            sigmas,
            mu=mu,
        )
        self._num_timesteps = len(timesteps)

        # Handle guidance
        guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None

        # 6. Denoising loop
        for i, t in enumerate(timesteps):
            if self.interrupt:
                continue

            timestep = t.expand(latents.shape[0]).to(latents.dtype)

            noise_pred = self.transformer(
                hidden_states=latents,
                timestep=timestep / 1000,
                guidance=guidance,
                pooled_projections=pooled_prompt_embeds,
                encoder_hidden_states=prompt_embeds,
                txt_ids=text_ids,
                img_ids=latent_image_ids,
                joint_attention_kwargs=self.joint_attention_kwargs,
                return_dict=False,
            )[0]
            
            noise_pred_uncond = self.transformer(
                hidden_states=latents,
                timestep=timestep / 1000,
                guidance=guidance,
                pooled_projections=negative_pooled_prompt_embeds,
                encoder_hidden_states=negative_prompt_embeds,
                txt_ids=negative_text_ids,
                img_ids=latent_image_ids,
                joint_attention_kwargs=self.joint_attention_kwargs,
                return_dict=False,
            )[0]
            
            noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

            latents_dtype = latents.dtype
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
             # Yield intermediate result
            torch.cuda.empty_cache()

        # Final image
        return self._decode_latents_to_image(latents, height, width, output_type)
        self.maybe_free_model_hooks()
        torch.cuda.empty_cache()

    def _decode_latents_to_image(self, latents, height, width, output_type, vae=None):
        """Decodes the given latents into an image."""
        vae = vae or self.vae
        latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
        image = vae.decode(latents, return_dict=False)[0]
        return self.image_processor.postprocess(image, output_type=output_type)[0]