File size: 10,204 Bytes
70ead2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# -*- coding: utf-8 -*-
"""
Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/193Qwk9yyPHgI0H84JJOchTovg_CELJuw
"""

import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer, BertModel, AdamW, get_linear_schedule_with_warmup
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from sklearn.model_selection import train_test_split

RANDOM_SEED = 42
np.random.seed(RANDOM_SEED)
torch.manual_seed(RANDOM_SEED)

# Preparing training data
train_file_path = '/content/sample_data/train_data.csv'
train_data = pd.read_csv(train_file_path) 

filtro = (train_data['emotion'] == 'anger') | (train_data['emotion'] == 'fear') | (train_data['emotion'] == 'joy') | (train_data['emotion'] == 'sadness') | (train_data['emotion'] == 'neutral') | (train_data['emotion'] == 'surprise')
df = train_data[filtro]

angerColumn = []
fearColumn = []
surpriseColumn = []
sadnessColumn = []
joyColumn = []
neutralColumn = []

for e in df['emotion']:
  if e == 'anger':
    angerColumn.append(1)
    joyColumn.append(0)
    sadnessColumn.append(0)
    fearColumn.append(0)
    surpriseColumn.append(0)
    neutralColumn.append(0)
  elif e == 'joy':
    joyColumn.append(1)
    angerColumn.append(0)
    sadnessColumn.append(0)
    fearColumn.append(0)
    surpriseColumn.append(0)
    neutralColumn.append(0)
  elif e == 'sadness':
    sadnessColumn.append(1)
    angerColumn.append(0)
    joyColumn.append(0)
    fearColumn.append(0)
    surpriseColumn.append(0)
    neutralColumn.append(0)
  elif e == 'fear':
    fearColumn.append(1)
    angerColumn.append(0)
    joyColumn.append(0)
    sadnessColumn.append(0)
    surpriseColumn.append(0)
    neutralColumn.append(0)
  elif e == 'surprise':
    surpriseColumn.append(1)
    angerColumn.append(0)
    joyColumn.append(0)
    sadnessColumn.append(0)
    fearColumn.append(0)
    neutralColumn.append(0)
  elif e == 'neutral':
    neutralColumn.append(1)
    surpriseColumn.append(0)
    angerColumn.append(0)
    joyColumn.append(0)
    sadnessColumn.append(0)
    fearColumn.append(0)

df['anger'] = angerColumn
df['fear'] = fearColumn
df['surprise'] = surpriseColumn
df['joy'] = joyColumn
df['sadness'] = sadnessColumn
df['neutral'] = neutralColumn

df.drop(['emotion', 'message_id', 'response_id', 'article_id', 'empathy', 'distress', 
               'empathy_bin', 'distress_bin', 'gender', 'education','race', 'age','income','personality_conscientiousness',
               'personality_openess','personality_extraversion','personality_agreeableness','personality_stability',
               'iri_perspective_taking','iri_personal_distress', 'iri_fantasy', 'iri_empathatic_concern','raw_input_emotions'], 
                axis=1, inplace=True)

print(df.head())

train_df, val_df = train_test_split(df, test_size=0.05)
train_df.shape, val_df.shape

LABEL_COLUMNS = ['anger','joy','fear','surprise','sadness', 'neutral']

sample_row = train_df.iloc[16]
sample_comment = sample_row.essay
sample_labels = sample_row[LABEL_COLUMNS]
print(sample_comment)
print(sample_labels.to_dict())

BERT_MODEL_NAME = 'bert-base-cased'
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)

encoding = tokenizer.encode_plus(
  sample_comment,
  add_special_tokens=True,
  max_length=512,
  return_token_type_ids=False,
  padding="max_length",
  return_attention_mask=True,
  return_tensors='pt',
)

encoding.keys()

encoding["input_ids"].shape, encoding["attention_mask"].shape

encoding["input_ids"].squeeze()[:20]

encoding["attention_mask"].squeeze()[:20]

print(tokenizer.convert_ids_to_tokens(encoding["input_ids"].squeeze())[:20])

class EmotionDataset(Dataset):
  def __init__(
    self, 
    data: pd.DataFrame, 
    tokenizer: BertTokenizer, 
    max_token_len: int = 128
  ):
    self.tokenizer = tokenizer
    self.data = data
    self.max_token_len = max_token_len
    
  def __len__(self):
    return len(self.data)

  def __getitem__(self, index: int):
    data_row = self.data.iloc[index]

    comment_text = data_row.essay
    labels = data_row[LABEL_COLUMNS]

    encoding = self.tokenizer.encode_plus(
      comment_text,
      add_special_tokens=True,
      max_length=self.max_token_len,
      return_token_type_ids=False,
      padding="max_length",
      truncation=True,
      return_attention_mask=True,
      return_tensors='pt',
    )

    return dict(
      comment_text=comment_text,
      input_ids=encoding["input_ids"].flatten(),
      attention_mask=encoding["attention_mask"].flatten(),
      labels=torch.FloatTensor(labels)
    )

bert_model = BertModel.from_pretrained(BERT_MODEL_NAME, return_dict=True)

train_dataset = EmotionDataset(train_df,tokenizer)
sample_item = train_dataset[0]
sample_item.keys()

sample_batch = next(iter(DataLoader(train_dataset, batch_size=8, num_workers=2)))
sample_batch["input_ids"].shape, sample_batch["attention_mask"].shape

output = bert_model(sample_batch["input_ids"], sample_batch["attention_mask"])

output.last_hidden_state.shape, output.pooler_output.shape

class EmotionDataModule(pl.LightningDataModule):

  def __init__(self, train_df, test_df, tokenizer, batch_size=8, max_token_len=128):
    super().__init__()
    self.batch_size = batch_size
    self.train_df = train_df
    self.test_df = test_df
    self.tokenizer = tokenizer
    self.max_token_len = max_token_len

  def setup(self, stage=None):
    self.train_dataset = EmotionDataset(
      self.train_df,
      self.tokenizer,
      self.max_token_len
    )

    self.test_dataset = EmotionDataset(
      self.test_df,
      self.tokenizer,
      self.max_token_len
    )

  def train_dataloader(self):
    return DataLoader(
      self.train_dataset,
      batch_size=self.batch_size,
      shuffle=True,
      num_workers=2
    )

  def val_dataloader(self):
    return DataLoader(
      self.test_dataset,
      batch_size=self.batch_size,
      num_workers=2
    )

  def test_dataloader(self):
    return DataLoader(
      self.test_dataset,
      batch_size=self.batch_size,
      num_workers=2
    )

N_EPOCHS = 10
BATCH_SIZE = 12
MAX_TOKEN_COUNT = 512

data_module = EmotionDataModule(
  train_df,
  val_df,
  tokenizer,
  batch_size=BATCH_SIZE,
  max_token_len=MAX_TOKEN_COUNT
)

class EmotionTagger(pl.LightningModule):
  def __init__(self, n_classes: int, n_training_steps=None, n_warmup_steps=None):
    super().__init__()
    self.bert = BertModel.from_pretrained(BERT_MODEL_NAME, return_dict=True)
    self.classifier = nn.Linear(self.bert.config.hidden_size, n_classes)
    self.n_training_steps = n_training_steps
    self.n_warmup_steps = n_warmup_steps
    self.criterion = nn.BCELoss()

  def forward(self, input_ids, attention_mask, labels=None):
    output = self.bert(input_ids, attention_mask=attention_mask)
    output = self.classifier(output.pooler_output)
    output = torch.sigmoid(output)    
    loss = 0
    if labels is not None:
        loss = self.criterion(output, labels)
    return loss, output

  def training_step(self, batch, batch_idx):
    input_ids = batch["input_ids"]
    attention_mask = batch["attention_mask"]
    labels = batch["labels"]
    loss, outputs = self(input_ids, attention_mask, labels)
    self.log("train_loss", loss, prog_bar=True, logger=True)
    return {"loss": loss, "predictions": outputs, "labels": labels}

  def validation_step(self, batch, batch_idx):
    input_ids = batch["input_ids"]
    attention_mask = batch["attention_mask"]
    labels = batch["labels"]
    loss, outputs = self(input_ids, attention_mask, labels)
    self.log("val_loss", loss, prog_bar=True, logger=True)
    return loss

  def test_step(self, batch, batch_idx):
    input_ids = batch["input_ids"]
    attention_mask = batch["attention_mask"]
    labels = batch["labels"]
    loss, outputs = self(input_ids, attention_mask, labels)
    self.log("test_loss", loss, prog_bar=True, logger=True)
    return loss

    for i, name in enumerate(LABEL_COLUMNS):
      class_roc_auc = pytorch_lightning.metrics.functional.auroc(predictions[:, i], labels[:, i])
      self.logger.experiment.add_scalar(f"{name}_roc_auc/Train", class_roc_auc, self.current_epoch)

  def configure_optimizers(self):
    optimizer = AdamW(self.parameters(), lr=2e-5)

    scheduler = get_linear_schedule_with_warmup(
      optimizer,
      num_warmup_steps=self.n_warmup_steps,
      num_training_steps=self.n_training_steps
    )

    return dict(
      optimizer=optimizer,
      lr_scheduler=dict(
        scheduler=scheduler,
        interval='step'
      )
    )

steps_per_epoch=len(train_df) // BATCH_SIZE
total_training_steps = steps_per_epoch * N_EPOCHS
warmup_steps = total_training_steps // 5

model = EmotionTagger(
  n_classes=len(LABEL_COLUMNS),
  n_warmup_steps=warmup_steps,
  n_training_steps=total_training_steps
)

!rm -rf lightning_logs/
!rm -rf checkpoints/

checkpoint_callback = ModelCheckpoint(
  dirpath="checkpoints",
  filename="best-checkpoint",
  save_top_k=1,
  verbose=True,
  monitor="val_loss",
  mode="min"
)

early_stopping_callback = EarlyStopping(monitor='val_loss', patience=2)

trainer = pl.Trainer( 
  max_epochs=N_EPOCHS,
  callbacks=[early_stopping_callback,checkpoint_callback],)

trainer.fit(model, data_module)

trained_model = EmotionTagger.load_from_checkpoint(
  trainer.checkpoint_callback.best_model_path,
  n_classes=len(LABEL_COLUMNS)
)
trained_model.eval()
trained_model.freeze()


def run_sentiment_analysis (txt) :
    THRESHOLD = 0.5
    
    encoding = tokenizer.encode_plus(
        txt,
        add_special_tokens=True,
        max_length=512,
        return_token_type_ids=False,
        padding="max_length",
        return_attention_mask=True,
        return_tensors='pt',
    )

    _, test_prediction = trained_model(encoding["input_ids"], encoding["attention_mask"])
    test_prediction = test_prediction.flatten().numpy()

    predictions = []

    for label, prediction in zip(LABEL_COLUMNS, test_prediction):
        if prediction < THRESHOLD:
            continue
        predictions.append("{label}: {prediction}")
        return predictions