File size: 9,866 Bytes
04558b7
 
 
 
121ee4b
04558b7
 
 
 
 
 
 
 
 
 
 
 
24bbdf7
04558b7
2bae7ed
66216e0
04558b7
 
 
 
 
 
 
 
 
 
 
 
 
 
66216e0
2bae7ed
66216e0
2bae7ed
 
 
66216e0
04558b7
2bae7ed
 
24bbdf7
04558b7
24bbdf7
90e8e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121ee4b
 
 
 
 
90e8e7a
04558b7
 
90e8e7a
 
04558b7
90e8e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04558b7
 
 
2bae7ed
04558b7
 
24bbdf7
2bae7ed
04558b7
 
2bae7ed
 
 
 
 
 
90e8e7a
 
 
 
 
 
24bbdf7
2bae7ed
24bbdf7
 
 
 
 
 
 
 
 
2bae7ed
 
24bbdf7
90e8e7a
2bae7ed
24bbdf7
2bae7ed
 
 
04558b7
 
 
 
 
 
 
2bae7ed
04558b7
 
 
 
 
 
 
 
 
2bae7ed
04558b7
 
 
 
 
90e8e7a
04558b7
 
 
90e8e7a
04558b7
 
 
cce1e9f
04558b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bae7ed
04558b7
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# -- Import libraries
from   langchain.prompts           import PromptTemplate
from   PIL                         import Image
from   streamlit.logger            import get_logger
from   streamlit_player            import st_player
import pandas                      as pd
import streamlit                   as st
import urllib.request
import argparse
import together
import logging
import requests
import utils
import spacy
import time
import os
import re
st.set_page_config(layout="wide")

@st.cache_data
def get_args():
    # -- 1. Setup arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('--DEFAULT_SYSTEM_PROMPT_LINK', type=str, default="https://raw.githubusercontent.com/AlbertoUAH/Castena/main/prompts/default_system_prompt.txt", help='Valor para DEFAULT_SYSTEM_PROMPT_LINK')
    parser.add_argument('--PODCAST_URL_VIDEO_PATH', type=str, default="https://raw.githubusercontent.com/AlbertoUAH/Castena/main/data/podcast_youtube_video.csv", help='Valor para PODCAST_URL_VIDEO_PATH')
    parser.add_argument('--TRANSCRIPTION', type=str, default='worldcast_roberto_vaquero', help='Name of the trascription')
    parser.add_argument('--MODEL', type=str, default='togethercomputer/llama-2-13b-chat', help='Model name')
    parser.add_argument('--EMB_MODEL', type=str, default='sentence-transformers/paraphrase-multilingual-mpnet-base-v2', help='Embedding model name')
    os.system("python -m spacy download es_core_news_lg")

    # -- 2. Setup env and logger
    os.environ["TOGETHER_API_KEY"] = "6101599d6e33e3bda336b8d007ca22e35a64c72cfd52c2d8197f663389fc50c5"
    logger = get_logger(__name__)

    # -- 3. Setup constants
    args = parser.parse_args()
    return args, logger

@st.cache_data
def get_podcast_data(path):
    podcast_url_video_df = pd.read_csv(path, sep=';')
    return podcast_url_video_df

@st.cache_resource(experimental_allow_widgets=True)
def get_basics_comp(emb_model, model, default_system_prompt_link, _logger, podcast_url_video_df, img_size=100):
    r    = requests.get("https://raw.githubusercontent.com/AlbertoUAH/Castena/main/media/castena-animated-icon.gif", stream=True)
    icon = Image.open(r.raw)
    icon = icon.resize((img_size, img_size))

    with st.sidebar.container():
        st.markdown(
            """
            <head>
                <style>
                    .footer1 {
                        text-align: center;
                    }
                </style>
            </head>
            <body>
                <div class="footer1">
                    <img src=https://raw.githubusercontent.com/AlbertoUAH/Castena/main/media/castena-animated-icon.gif width="150" height="150">
                </div>
                <br>
            </body>
            """,
            unsafe_allow_html=True,
    )


    genre = st.sidebar.radio(
                        "Seleccione el LLM",
                        ["LLAMA", "GPT (not available yet)"]
                    )
    st.sidebar.info('Modelo LLAMA: ' + str(model).split('/')[-1] + '\nModelo GPT: gpt-3.5-turbo', icon="ℹ️")
    podcast_list = list(podcast_url_video_df['podcast_name_lit'].apply(lambda x: x.replace("'", "")))
    video_option = st.sidebar.selectbox(
        "Seleccione el podcast",
        podcast_list,
        on_change=clean_chat
    )

    # -- Add icons
    with st.sidebar.container():
        st.markdown(
            """
            <head>
                <style>
                    .footer2 {
                        position: fixed;
                        bottom: 2%;
                        left: 6.5%;
                    }

                    .footer2 a {
                        margin: 10px;
                        text-decoration: none;
                    }
                </style>
            </head>
            <body>
                <div class="footer2">
                    <a href="https://www.linkedin.com/in/alberto-fernandez-hernandez-3a3474136">
                        <img src="https://cdn-icons-png.flaticon.com/128/3536/3536505.png" width="32" height="32">
                    </a>
                    <a href="https://github.com/AlbertoUAH/Castena">
                        <img src="https://cdn-icons-png.flaticon.com/128/733/733553.png" width="32" height="32">
                    </a>
                    <a href="https://www.buymeacoffee.com/castena">
                        <img src="https://cdn-icons-png.flaticon.com/128/761/761767.png" width="32" height="32">
                    </a>
                </div>
            </body>
            """,
            unsafe_allow_html=True,
    )


    video_option_joined = '_'.join(video_option.replace(': Entrevista a ', ' ').lower().split(' ')).replace("\'", "")
    video_option_joined_path = "{}_transcription.txt".format(video_option_joined)
    youtube_video_url   = list(podcast_url_video_df[podcast_url_video_df['podcast_name'].str.contains(video_option_joined)]['youtube_video_url'])[0].replace("\'", "")
    st.title("[Podcast: {}]({})".format(video_option.replace("'", "").title(), youtube_video_url))

    # -- 4. Setup request for system prompt
    f = urllib.request.urlopen(default_system_prompt_link)
    default_system_prompt = str(f.read(), 'UTF-8')

    # -- 5. Setup app
    translator, nlp, retriever = utils.setup_app(video_option_joined_path, emb_model, model, _logger)

    # -- 6. Setup model
    together.api_key = os.environ["TOGETHER_API_KEY"]
    together.Models.start(model)
    return together, translator, nlp, retriever, video_option, video_option_joined_path, default_system_prompt, youtube_video_url

def clean_chat():
    st.session_state.conversation = None
    st.session_state.chat_history = None
    st.session_state.messages     = [{'role': 'assistant', 'content': 'Nuevo chat creado'}]

def main():
    args, logger = get_args()
    B_INST, E_INST = "[INST]", "[/INST]"
    B_SYS, E_SYS   = "<<SYS>>\n", "\n<</SYS>>\n\n"

    PODCAST_URL_VIDEO_PATH     = args.PODCAST_URL_VIDEO_PATH
    DEFAULT_SYSTEM_PROMPT_LINK = args.DEFAULT_SYSTEM_PROMPT_LINK
    TRANSCRIPTION              = args.TRANSCRIPTION
    TRANSCRIPTION_PATH         = '{}_transcription.txt'.format(TRANSCRIPTION)
    MODEL                      = args.MODEL
    EMB_MODEL                  = args.EMB_MODEL
    WIDTH                      = 50
    SIDE                       = (100 - WIDTH) / 2

    
    podcast_url_video_df = get_podcast_data(PODCAST_URL_VIDEO_PATH)

    together, translator, nlp, retriever, video_option, video_option_joined_path, default_system_prompt, youtube_video_url = get_basics_comp(EMB_MODEL, MODEL, 
                                                                                                                                             DEFAULT_SYSTEM_PROMPT_LINK, logger, 
                                                                                                                                             podcast_url_video_df, img_size=100)

    # -- 6. Setup prompt template + llm chain
    instruction = """CONTEXTO:/n/n {context}/n

PREGUNTA: {question}

RESPUESTA: """
    prompt_template = utils.get_prompt(instruction, default_system_prompt, B_SYS, E_SYS, B_INST, E_INST, logger)

    llama_prompt = PromptTemplate(
        template=prompt_template, input_variables=["context", "question"]
    )
    chain_type_kwargs = {"prompt": llama_prompt}

    qa_chain = utils.create_llm_chain(MODEL, retriever, chain_type_kwargs, logger, video_option_joined_path)

    # ---------------------------------------------------------------------
    _, container, _ = st.columns([SIDE, WIDTH, SIDE])
    with container:
        st_player(utils.typewrite(youtube_video_url))

    if "messages" not in st.session_state:
        st.session_state.messages = []

    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    if prompt := st.chat_input("¡Pregunta lo que quieras!"):
        with st.chat_message("user"):
            st.markdown(prompt)
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("assistant"):
            llm_response = qa_chain(prompt)
            llm_response = utils.process_llm_response(llm_response, nlp)
            st.markdown(llm_response)
            start_time_str_list = []; start_time_seconds_list = []; end_time_seconds_list = []
            for response in llm_response.split('\n'):
                if re.search(r'(\d{2}:\d{2}:\d{2}(.\d{6})?)', response) != None:
                    start_time_str, start_time_seconds, _, end_time_seconds = utils.add_hyperlink_and_convert_to_seconds(response)
                    start_time_str_list.append(start_time_str)
                    start_time_seconds_list.append(start_time_seconds)
                    end_time_seconds_list.append(end_time_seconds)

            if start_time_str_list:
                for start_time_seconds, start_time_str, end_time_seconds in zip(start_time_seconds_list, start_time_str_list, end_time_seconds_list):
                    st.markdown("__Fragmento: " + start_time_str + "__")
                    _, container, _ = st.columns([SIDE, WIDTH, SIDE])
                    with container:
                        st_player(youtube_video_url.replace("?enablejsapi=1", "") + f'?start={start_time_seconds}&end={end_time_seconds}')

        st.session_state.messages.append({"role": "assistant", "content": llm_response})
# -- Sample: streamlit run app.py -- --DEFAULT_SYSTEM_PROMPT_LINK=https://raw.githubusercontent.com/AlbertoUAH/Castena/main/prompts/default_system_prompt.txt --PODCAST_URL_VIDEO_PATH=https://raw.githubusercontent.com/AlbertoUAH/Castena/main/data/podcast_youtube_video.csv --TRANSCRIPTION=worldcast_roberto_vaquero --MODEL=togethercomputer/llama-2-7b-chat --EMB_MODEL=BAAI/bge-base-en-v1.5
if __name__ == '__main__':
    main()