File size: 17,066 Bytes
b7c34ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import streamlit as st
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import requests
import io
from timm import create_model

# Set page config
st.set_page_config(
    page_title="Sports Ball Classifier",
    page_icon="πŸ€",
    layout="wide"
)

# Custom ConvNeXt model definition (in case the saved model uses a different architecture)
class ConvNeXtBlock(nn.Module):
    def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)
        self.norm = nn.LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(dim, 4 * dim)
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), 
                                requires_grad=True) if layer_scale_init_value > 0 else None

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
        x = input + x
        return x

class CustomConvNeXt(nn.Module):
    def __init__(self, num_classes=15):
        super().__init__()
        self.stem = nn.Sequential(
            nn.Conv2d(3, 96, kernel_size=4, stride=4),
            nn.LayerNorm([96, 56, 56], eps=1e-6)
        )
        
        # Stage 1
        self.stage1 = nn.Sequential(*[ConvNeXtBlock(96) for _ in range(3)])
        
        # Downsample 1
        self.downsample1 = nn.Sequential(
            nn.LayerNorm([96, 56, 56], eps=1e-6),
            nn.Conv2d(96, 192, kernel_size=2, stride=2)
        )
        
        # Stage 2
        self.stage2 = nn.Sequential(*[ConvNeXtBlock(192) for _ in range(3)])
        
        # Downsample 2
        self.downsample2 = nn.Sequential(
            nn.LayerNorm([192, 28, 28], eps=1e-6),
            nn.Conv2d(192, 384, kernel_size=2, stride=2)
        )
        
        # Stage 3
        self.stage3 = nn.Sequential(*[ConvNeXtBlock(384) for _ in range(9)])
        
        # Downsample 3
        self.downsample3 = nn.Sequential(
            nn.LayerNorm([384, 14, 14], eps=1e-6),
            nn.Conv2d(384, 768, kernel_size=2, stride=2)
        )
        
        # Stage 4
        self.stage4 = nn.Sequential(*[ConvNeXtBlock(768) for _ in range(3)])
        
        # Head
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.norm = nn.LayerNorm(768, eps=1e-6)
        self.head = nn.Linear(768, num_classes)

    def forward(self, x):
        x = self.stem(x)
        x = self.stage1(x)
        x = self.downsample1(x)
        x = self.stage2(x)
        x = self.downsample2(x)
        x = self.stage3(x)
        x = self.downsample3(x)
        x = self.stage4(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.norm(x)
        x = self.head(x)
        return x

# Cache the model loading to avoid reloading on every interaction
@st.cache_resource
def load_model():
    """Load the pre-trained ViT model for sports ball classification"""
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    try:
        # Download model weights from Hugging Face
        model_url = "https://huggingface.co/Alamgirapi/sports-ball-convnext-classifier/resolve/main/model.pth"
        response = requests.get(model_url)
        if response.status_code != 200:
            raise Exception(f"Failed to download model: HTTP {response.status_code}")
            
        model_state = torch.load(io.BytesIO(response.content), map_location=device)
        
        # Inspect the state dict to understand the model structure
        sample_keys = list(model_state.keys())[:10]
        
        # Try Vision Transformer models (this is likely what was used)
        vit_models_to_try = [
            ("vit_base_patch16_224", lambda: create_model('vit_base_patch16_224', pretrained=False, num_classes=15)),
            ("vit_small_patch16_224", lambda: create_model('vit_small_patch16_224', pretrained=False, num_classes=15)),
            ("vit_tiny_patch16_224", lambda: create_model('vit_tiny_patch16_224', pretrained=False, num_classes=15)),
            ("vit_large_patch16_224", lambda: create_model('vit_large_patch16_224', pretrained=False, num_classes=15)),
            ("vit_base_patch32_224", lambda: create_model('vit_base_patch32_224', pretrained=False, num_classes=15)),
        ]
        
        st.info("Trying Vision Transformer (ViT) models...")
        for model_name, model_func in vit_models_to_try:
            try:
                model = model_func()
                model.load_state_dict(model_state)
                model.eval()
                model.to(device)
                st.success(f"βœ… Successfully loaded model using: {model_name}")
                return model, device
            except Exception as e:
                st.warning(f"❌ Failed to load with {model_name}: {str(e)[:100]}...")
                continue
        
        # Try ConvNeXt models as fallback
        convnext_models_to_try = [
            ("convnext_tiny", lambda: create_model('convnext_tiny', pretrained=False, num_classes=15)),
            ("convnext_small", lambda: create_model('convnext_small', pretrained=False, num_classes=15)),
            ("convnext_base", lambda: create_model('convnext_base', pretrained=False, num_classes=15)),
        ]
        
        st.info("Trying ConvNeXt models as fallback...")
        for model_name, model_func in convnext_models_to_try:
            try:
                model = model_func()
                model.load_state_dict(model_state)
                model.eval()
                model.to(device)
                st.success(f"βœ… Successfully loaded model using: {model_name}")
                return model, device
            except Exception as e:
                st.warning(f"❌ Failed to load with {model_name}: {str(e)[:100]}...")
                continue
        
        # Try other common models
        other_models_to_try = [
            ("resnet50", lambda: create_model('resnet50', pretrained=False, num_classes=15)),
            ("efficientnet_b0", lambda: create_model('efficientnet_b0', pretrained=False, num_classes=15)),
            ("mobilenetv3_large_100", lambda: create_model('mobilenetv3_large_100', pretrained=False, num_classes=15)),
        ]
        
        st.info("Trying other model architectures...")
        for model_name, model_func in other_models_to_try:
            try:
                model = model_func()
                model.load_state_dict(model_state)
                model.eval()
                model.to(device)
                st.success(f"βœ… Successfully loaded model using: {model_name}")
                return model, device
            except Exception as e:
                st.warning(f"❌ Failed to load with {model_name}: {str(e)[:100]}...")
                continue
        
        # If all fail, try loading with strict=False and show detailed info
        st.info("Attempting to load with strict=False...")
        try:
            # Try with the most common ViT model first
            model = create_model('vit_base_patch16_224', pretrained=False, num_classes=15)
            missing_keys, unexpected_keys = model.load_state_dict(model_state, strict=False)
            
            if missing_keys:
                st.warning(f"⚠️ Missing keys ({len(missing_keys)}): {missing_keys[:3]}...")
            if unexpected_keys:
                st.warning(f"⚠️ Unexpected keys ({len(unexpected_keys)}): {unexpected_keys[:3]}...")
            
            model.eval()
            model.to(device)
            
            if len(missing_keys) > 0 or len(unexpected_keys) > 0:
                st.error("⚠️ Model loaded with mismatched weights - predictions will likely be unreliable!")
                st.info("πŸ’‘ The saved model might have been trained with a different architecture.")
            else:
                st.success("βœ… Model loaded successfully with strict=False")
            
            return model, device
            
        except Exception as e:
            st.error(f"❌ Failed to load model with all methods. Error: {str(e)}")
            st.info("πŸ’‘ Try checking the model file or re-training with a compatible architecture.")
            return None, device
            
    except Exception as e:
        st.error(f"❌ Error downloading or loading model: {str(e)}")
        return None, device

def get_transform():
    """Define image preprocessing transforms"""
    return transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

def predict_image(image, model, device, transform, label_names, topk=5):
    """Make predictions on uploaded image"""
    # Transform image
    img_tensor = transform(image).unsqueeze(0).to(device)
    
    # Predict
    with torch.no_grad():
        outputs = model(img_tensor)
        probs = F.softmax(outputs, dim=1)
        top_probs, top_idxs = torch.topk(probs, k=topk)
    
    # Convert to CPU for display
    top_probs = top_probs[0].cpu().numpy()
    top_idxs = top_idxs[0].cpu().numpy()
    
    return top_probs, top_idxs

def main():
    st.title("πŸ€ Sports Ball Classifier")
    st.markdown("Upload an image of a sports ball and get AI-powered predictions!")
    
    # Define label names
    label_names = [
        'american_football', 'baseball', 'basketball', 'billiard_ball', 
        'bowling_ball', 'cricket_ball', 'football', 'golf_ball', 
        'hockey_ball', 'hockey_puck', 'rugby_ball', 'shuttlecock', 
        'table_tennis_ball', 'tennis_ball', 'volleyball'
    ]
    
    # Load model
    with st.spinner("Loading model..."):
        model, device = load_model()
    
    if model is None:
        st.error("Failed to load model. Please try again later.")
        return
    
    st.success(f"Model loaded successfully! Using device: {device}")
    
    # Get image transform
    transform = get_transform()
    
    # Create two columns
    col1, col2 = st.columns([1, 1])
    
    with col1:
        st.subheader("Upload Image")
        uploaded_file = st.file_uploader(
            "Choose an image...", 
            type=['png', 'jpg', 'jpeg'],
            help="Upload a clear image of a sports ball for best results"
        )
        
        # Number of top predictions to show
        topk = st.slider("Number of predictions to show:", 1, 10, 5)
    
    with col2:
        st.subheader("Predictions")
        
        if uploaded_file is not None:
            # Display uploaded image
            image = Image.open(uploaded_file).convert("RGB")
            st.image(image, caption="Uploaded Image", use_container_width=True)
            
            # Make predictions
            with st.spinner("Analyzing image..."):
                try:
                    top_probs, top_idxs = predict_image(
                        image, model, device, transform, label_names, topk
                    )
                    
                    # Show original top prediction prominently
                    top_confidence = float(top_probs[0] * 100)
                    top_label = label_names[top_idxs[0]].replace('_', ' ').title()
                    
                    if top_confidence > 70:
                        color = "🟒"
                    elif top_confidence > 40:
                        color = "🟑"
                    else:
                        color = "πŸ”΄"
                    
                    st.success(f"{color} **Primary Prediction: {top_label}** ({top_confidence:.2f}%)")
                    st.progress(float(top_confidence / 100))
                    
                    # Show top 3 high confidence predictions
                    st.subheader("Top 3 Predictions:")
                    
                    for i in range(min(3, len(top_probs))):
                        confidence = float(top_probs[i] * 100)
                        label = label_names[top_idxs[i]].replace('_', ' ').title()
                        
                        # Color coding based on confidence
                        if confidence > 70:
                            color = "🟒"
                        elif confidence > 40:
                            color = "🟑"
                        else:
                            color = "πŸ”΄"
                        
                        st.write(f"{i+1}. {color} **{label}**: {confidence:.2f}%")
                        
                        # Progress bar for confidence (convert to Python float)
                        st.progress(float(confidence / 100))
                    
                    # Show all predictions if user wants more
                    if topk > 3:
                        with st.expander(f"See all {topk} predictions"):
                            for i in range(3, len(top_probs)):
                                confidence = float(top_probs[i] * 100)
                                label = label_names[top_idxs[i]].replace('_', ' ').title()
                                
                                if confidence > 70:
                                    color = "🟒"
                                elif confidence > 40:
                                    color = "🟑"
                                else:
                                    color = "πŸ”΄"
                                
                                st.write(f"{i+1}. {color} **{label}**: {confidence:.2f}%")
                                st.progress(float(confidence / 100))
                    
                    # Show detailed results in expandable section
                    with st.expander("Detailed Results"):
                        fig, ax = plt.subplots(figsize=(10, 6))
                        
                        labels = [label_names[idx].replace('_', ' ').title() for idx in top_idxs]
                        probabilities = [float(prob * 100) for prob in top_probs]  # Convert to Python float
                        
                        bars = ax.barh(labels[::-1], probabilities[::-1])
                        ax.set_xlabel('Confidence (%)')
                        ax.set_title(f'Top {topk} Predictions')
                        ax.set_xlim(0, 100)
                        
                        # Color bars based on confidence
                        for bar, prob in zip(bars, probabilities[::-1]):
                            if prob > 70:
                                bar.set_color('#4CAF50')  # Green
                            elif prob > 40:
                                bar.set_color('#FF9800')  # Orange
                            else:
                                bar.set_color('#F44336')  # Red
                        
                        # Add percentage labels on bars
                        for i, (bar, prob) in enumerate(zip(bars, probabilities[::-1])):
                            ax.text(float(prob) + 1, bar.get_y() + bar.get_height()/2, 
                                   f'{float(prob):.1f}%', va='center')
                        
                        plt.tight_layout()
                        st.pyplot(fig)
                
                except Exception as e:
                    st.error(f"Error during prediction: {str(e)}")
        
        else:
            st.info("πŸ‘† Please upload an image to get started!")
    
    # Additional information
    st.markdown("---")
    st.subheader("Supported Sports Balls")
    
    # Display supported categories in a nice grid
    cols = st.columns(5)
    for i, label in enumerate(label_names):
        with cols[i % 5]:
            st.write(f"β€’ {label.replace('_', ' ').title()}")
    
    st.markdown("---")
    st.markdown("""

    **About this model:**

    - Built using ConvNeXt architecture

    - Trained to classify 15 different types of sports balls

    - Model weights from: [Alamgirapi/sports-ball-convnext-classifier](https://huggingface.co/Alamgirapi/sports-ball-convnext-classifier)

    

    **Tips for best results:**

    - Use clear, well-lit images

    - Ensure the ball is the main subject

    - Avoid cluttered backgrounds when possible

    """)

if __name__ == "__main__":
    main()