File size: 11,808 Bytes
db78b44 f531887 db78b44 f531887 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# src/predict.py
import os # To help build file paths correctly
import torch # PyTorch library, for tensors and model operations
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
) # Hugging Face stuff for models
# --- Configuration ---
# This is where our fine-tuned model and tokenizer files are stored
# Assuming 'fine_tuned_model' directory is inside 'src/' and next to this predict.py file
_SCRIPT_DIR = os.path.dirname(
os.path.abspath(__file__)
) # Gets the directory where this script is
MODEL_PATH = os.path.join(
_SCRIPT_DIR, "fine_tuned_model"
) # User confirmed this variable name and directory
print(f"DEBUG (predict.py): Model path set to: {MODEL_PATH}") # For checking the path
# --- Device Setup ---
# Check if a GPU is available, otherwise use CPU
# Using GPU makes predictions much faster!
if torch.cuda.is_available():
device = torch.device("cuda")
# Trying to get the name of the GPU, just for information
try:
gpu_name = torch.cuda.get_device_name(0)
print(f"INFO (predict.py): GPU is available ({gpu_name}), using CUDA.")
except Exception as e:
print(
f"INFO (predict.py): GPU is available, using CUDA. (Could not get GPU name: {e})"
)
else:
device = torch.device("cpu")
print(
"INFO (predict.py): GPU not available, using CPU. Predictions might be slower."
)
# --- Load Model and Tokenizer ---
# We load these once when the script (or module) is first loaded.
# This is much better than loading them every time we want to predict.
model = None
tokenizer = None
id2label_mapping = {0: "negative", 1: "neutral", 2: "positive"} # Default mapping
try:
print(f"INFO (predict.py): Loading model from {MODEL_PATH}...")
# Load the pre-trained model for sequence classification
# This should be the PyTorch RoBERTa model we fine-tuned
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
model.to(device) # Move the model to the GPU (or CPU if no GPU)
model.eval() # Set the model to evaluation mode (important for layers like Dropout)
print("INFO (predict.py): Model loaded successfully and set to evaluation mode.")
print(f"INFO (predict.py): Loading tokenizer from {MODEL_PATH}...")
# Load the tokenizer that matches the model
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
print("INFO (predict.py): Tokenizer loaded successfully.")
# Get the label mapping from the model's configuration
# This was saved during fine-tuning
if hasattr(model.config, "id2label") and model.config.id2label:
id2label_mapping = model.config.id2label
# Convert string keys from config.json to int if necessary
id2label_mapping = {int(k): v for k, v in id2label_mapping.items()}
print(
f"INFO (predict.py): Loaded id2label mapping from model config: {id2label_mapping}"
)
else:
print(
"WARN (predict.py): id2label not found in model config, using default mapping."
)
except FileNotFoundError:
print(f"--- CRITICAL ERROR (predict.py) ---")
print(f"Model or Tokenizer files NOT FOUND at the specified path: {MODEL_PATH}")
print(
f"Please ensure the '{os.path.basename(MODEL_PATH)}' directory exists at '{_SCRIPT_DIR}' and contains all necessary model files (pytorch_model.bin/model.safetensors, config.json, tokenizer files, etc.)."
)
# Keep model and tokenizer as None, so predict_sentiments can handle it
except Exception as e:
print(f"--- ERROR (predict.py) ---")
print(f"An unexpected error occurred loading model or tokenizer: {e}")
# Keep model and tokenizer as None
# --- Preprocessing Function ---
# Same function we used for training data to make sure inputs are consistent
def preprocess_tweet(text):
"""Replaces @user mentions and http links with placeholders."""
preprocessed_text = []
if text is None:
return "" # Handle None input
# Split text into parts by space
for t in text.split(" "):
if len(t) > 0: # Avoid processing empty parts from multiple spaces
t = "@user" if t.startswith("@") else t # Replace mentions
t = "http" if t.startswith("http") else t # Replace links
preprocessed_text.append(t)
return " ".join(preprocessed_text) # Put the parts back together
# --- Prediction Function (UPDATED to return probabilities) ---
def predict_sentiments(comment_list: list):
"""
Predicts sentiments for a list of comment strings.
Returns a list of dictionaries, each containing the predicted label
and the probabilities (scores) for each class.
e.g., [{'label': 'positive', 'scores': {'negative': 0.1, 'neutral': 0.2, 'positive': 0.7}}, ...]
"""
# Check if model and tokenizer are ready
if model is None or tokenizer is None:
print(
"ERROR (predict.py - predict_sentiments): Model or Tokenizer not loaded. Cannot predict."
)
# Return an error structure
return [{"label": "Error: Model not loaded", "scores": {}}] * len(comment_list)
if not comment_list: # Handle empty input list
return []
inference_batch_size = 64 # You can adjust this number based on performance/memory
print(
f"INFO (predict.py): Predicting sentiments for {len(comment_list)} comments in batches of {inference_batch_size}..."
)
all_results_list = [] # We'll collect results for all batches here
# --- Loop through the comment list in batches ---
try:
total_comments = len(comment_list)
# This loop goes from 0 to total_comments, jumping by inference_batch_size each time
for i in range(0, total_comments, inference_batch_size):
# Get the current slice of comments for this batch
batch_comments = comment_list[i : i + inference_batch_size]
# Just printing progress for long lists
current_batch_num = i // inference_batch_size + 1
total_batches = (
total_comments + inference_batch_size - 1
) // inference_batch_size
print(
f"DEBUG (predict.py): Processing batch {current_batch_num}/{total_batches}..."
)
# --- Process ONLY the current batch ---
# 1. Preprocess this specific batch
processed_batch = [preprocess_tweet(comment) for comment in batch_comments]
# 2. Tokenize this batch
# Tokenizer handles padding within this smaller batch
inputs = tokenizer(
processed_batch,
padding=True,
truncation=True,
return_tensors="pt",
max_length=(
tokenizer.model_max_length
if hasattr(tokenizer, "model_max_length")
and tokenizer.model_max_length
else 512
),
)
# 3. Move this batch's inputs to the device (GPU/CPU)
inputs = {k: v.to(device) for k, v in inputs.items()}
# 4. Make prediction for this batch - no need for gradients
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits # Raw scores from the model for this batch
# 5. Calculate probabilities and get predicted class IDs for this batch
probabilities_batch = torch.softmax(logits, dim=-1)
predicted_class_ids_batch = torch.argmax(probabilities_batch, dim=-1)
# 6. Move results back to CPU, convert to lists for easier looping
probs_list_batch = probabilities_batch.cpu().numpy().tolist()
ids_list_batch = predicted_class_ids_batch.cpu().numpy().tolist()
# 7. Format results for each comment in THIS batch
batch_results = []
for j in range(len(ids_list_batch)):
pred_id = ids_list_batch[j]
pred_label = id2label_mapping.get(
pred_id, "Unknown"
) # Map ID to label name
# Create the scores dictionary for this comment
pred_scores = {
label_name: probs_list_batch[j][label_id]
for label_id, label_name in id2label_mapping.items()
if 0
<= label_id
< probabilities_batch.shape[-1] # Safety check for index
}
# Add the result for this comment
batch_results.append({"label": pred_label, "scores": pred_scores})
# Add the results from this completed batch to our main list
all_results_list.extend(batch_results)
# --- Finished processing current batch ---
print(
f"INFO (predict.py): Finished processing all {len(all_results_list)} comments."
)
except Exception as e:
# Catch errors that might happen during the loop
print(f"--- ERROR (predict.py - predict_sentiments loop) ---")
print(
f"An error occurred during batch prediction (around comment index {i}): {e}"
)
import traceback
traceback.print_exc() # Print full error details to console
# Try to return results for processed batches + error messages for the rest
num_processed = len(all_results_list)
num_remaining = len(comment_list) - num_processed
# Add error indicators for comments that couldn't be processed
all_results_list.extend(
[{"label": "Error: Batch failed", "scores": {}}] * num_remaining
)
# Return the list containing results for all comments
return all_results_list
# --- Main block for testing this script directly (UPDATED to show scores) ---
if __name__ == "__main__":
print("\n--- Testing predict.py Script Directly ---")
if model and tokenizer:
sample_comments_for_testing = [
"This is an amazing movie, I loved it!",
"I'm not sure how I feel about this, it was okay.",
"Worst experience ever, would not recommend.",
"The food was alright, but the service was slow.",
"What a fantastic day! #blessed",
"I hate waiting in long lines.",
"@user Check out http this is cool.",
"Just a normal sentence, nothing special here.",
"",
"This new update is absolutely terrible and full of bugs.",
]
print("\nInput Comments for Direct Test:")
for i, c in enumerate(sample_comments_for_testing):
print(f"{i+1}. '{c}'")
# Get predictions (now a list of dictionaries)
prediction_results = predict_sentiments(sample_comments_for_testing)
print("\nPredicted Sentiments and Scores (Direct Test):")
# Loop through the results list
for i, (comment, result) in enumerate(
zip(sample_comments_for_testing, prediction_results)
):
print(f"{i+1}. Comment: '{comment}'")
# Format scores nicely for printing
scores_dict = result.get("scores", {})
formatted_scores = ", ".join(
[f"{name}: {score:.3f}" for name, score in scores_dict.items()]
)
print(f" -> Predicted Label: {result.get('label', 'N/A')}")
# Also print the raw scores dictionary
print(f" -> Scores: {{{formatted_scores}}}")
print("--- Direct Test Finished ---")
else:
print("ERROR (predict.py - main test): Model and/or tokenizer not loaded.")
print(
f"Please check the MODEL_PATH ('{MODEL_PATH}') and ensure model files are present."
)
|