File size: 12,970 Bytes
a07a3b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Unica Chatbot for Q&A"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This chatbot will be working for `Q&A` and we will make sure that it's not limited by trained data knowledge by also be able to search relevant information on the internet by using `tavily`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "jp-MarkdownHeadingCollapsed": true
   },
   "source": [
    "## Installing all the packages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Packages installed successfully.\n"
     ]
    }
   ],
   "source": [
    "# Adding all packages\n",
    "import sys\n",
    "import subprocess\n",
    "\n",
    "# Install packages from requirements.txt\n",
    "def install_packages(requirements_file='requirements.txt'):\n",
    "    try:\n",
    "        subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', requirements_file])\n",
    "        print(\"Packages installed successfully.\")\n",
    "    except subprocess.CalledProcessError as e:\n",
    "        print(f\"Error installing packages: {e}\")\n",
    "\n",
    "# Call the function to install packages\n",
    "install_packages()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "jp-MarkdownHeadingCollapsed": true
   },
   "source": [
    "## Chatbot Logic"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# importing the packages to be used\n",
    "import logging\n",
    "import os\n",
    "import markdown\n",
    "from dotenv import load_dotenv\n",
    "import gradio as gr\n",
    "from langchain_groq import ChatGroq\n",
    "from langchain.utilities.tavily_search import TavilySearchAPIWrapper\n",
    "from langchain_community.tools.tavily_search import TavilySearchResults\n",
    "from langchain_core.messages import AnyMessage, SystemMessage, HumanMessage\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Set up logging configuration\n",
    "logging.basicConfig(\n",
    "    level=logging.INFO,\n",
    "    format='%(asctime)s - %(levelname)s - %(message)s',\n",
    "    datefmt='%Y-%m-%d %H:%M:%S'\n",
    ")\n",
    "logger = logging.getLogger(__name__)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Intializing the API Key from the environment variables\n",
    "# Load environment variables from .env.local file\n",
    "load_dotenv('.env.local')\n",
    "\n",
    "# Access the variables\n",
    "groq_api_key = os.getenv('GROQ_API_KEY')\n",
    "tavily_api_key = os.getenv('TAVILY_API_KEY')\n",
    "\n",
    "# LLM Initialization\n",
    "llm = ChatGroq(\n",
    "    model_name=\"llama-3.3-70b-versatile\",\n",
    "    groq_api_key=groq_api_key,\n",
    "    temperature=0\n",
    ")\n",
    "\n",
    "# Tavily Search engine for LLM\n",
    "tavilySearch = TavilySearchAPIWrapper(tavily_api_key=tavily_api_key)\n",
    "search_tool = TavilySearchResults(max_results=3, api_wrapper=tavilySearch)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "# System Prompt\n",
    "system_prompt = \"\"\"\n",
    "You are Unica, a friendly and helpful assistant designed to support students on the Moodle platform. Your primary goal is to provide quick and accurate answers to students' study-related questions, helping them navigate their courses and resources efficiently.\n",
    "\n",
    "Guidelines:\n",
    "1. Understand the context of Moodle and the student's coursework.\n",
    "2. Be concise and clear in your responses.\n",
    "3. Provide relevant information directly addressing the student's question.\n",
    "4. Maintain a positive and encouraging tone.\n",
    "5. Offer study tips when appropriate.\n",
    "6. Handle unknowns gracefully by suggesting resources or encouraging further inquiry.\n",
    "7. Respect privacy and maintain a professional demeanor.\n",
    "8. Encourage engagement with course materials and resources.\n",
    "9. Use Markdown formatting to enhance the readability of your responses.\n",
    "\n",
    "Example Responses:\n",
    "- Student: \"How do I submit my assignment on Moodle?\"\n",
    "  Unica: \"To submit your assignment, navigate to the course page, find the assignment link, and click on **'Submit assignment'**. Follow the prompts to upload your file. If you encounter any issues, feel free to ask for further assistance!\"\n",
    "\n",
    "- Student: \"What are the upcoming deadlines for my course?\"\n",
    "  Unica: \"To view upcoming deadlines, check the course calendar or the announcements section on your Moodle dashboard. If you have specific questions about a deadline, it's best to contact your instructor.\"\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Agent Class\n",
    "class Agent:\n",
    "    def __init__(self, model, tools, system_prompt=\"\"):\n",
    "        self.system_prompt = system_prompt\n",
    "        self.model = model\n",
    "        self.tools = {t.name: t for t in tools}\n",
    "\n",
    "    def call_groq(self, messages):\n",
    "        if self.system_prompt:\n",
    "            messages = [SystemMessage(content=self.system_prompt)] + messages\n",
    "        logger.info(f\"Calling Groq with messages: {messages}\")\n",
    "        message = self.model.invoke(messages)\n",
    "        logger.info(f\"Groq response: {message}\")\n",
    "        return message\n",
    "\n",
    "    def handle_query(self, user_query):\n",
    "        messages = [HumanMessage(content=user_query)]\n",
    "        response = self.call_groq(messages)\n",
    "        return response.content\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Initialize Agent\n",
    "agent = Agent(model=llm, tools=[search_tool], system_prompt=system_prompt)\n",
    "\n",
    "def render_markdown(markdown_text, is_user=False):\n",
    "    # Convert Markdown to HTML\n",
    "    html_content = markdown.markdown(markdown_text)\n",
    "    # Wrap the HTML content in a chat bubble layout\n",
    "    bubble_class = \"user-bubble\" if is_user else \"assistant-bubble\"\n",
    "    bubble_html = f\"\"\"\n",
    "    <div class=\"{bubble_class}\">\n",
    "        {html_content}\n",
    "    </div>\n",
    "    <style>\n",
    "        .user-bubble {{\n",
    "            background-color: #e1f5fe;\n",
    "            border-radius: 15px;\n",
    "            padding: 10px;\n",
    "            margin: 10px 0;\n",
    "            max-width: 70%;\n",
    "            align-self: flex-end;\n",
    "            box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);\n",
    "        }}\n",
    "        .assistant-bubble {{\n",
    "            background-color: #f1f1f1;\n",
    "            border-radius: 15px;\n",
    "            padding: 10px;\n",
    "            margin: 10px 0;\n",
    "            max-width: 70%;\n",
    "            align-self: flex-start;\n",
    "            box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);\n",
    "        }}\n",
    "        .chat-container {{\n",
    "            display: flex;\n",
    "            flex-direction: column;\n",
    "            gap: 10px;\n",
    "            padding: 10px;\n",
    "        }}\n",
    "    </style>\n",
    "    \"\"\"\n",
    "    return bubble_html\n",
    "\n",
    "def handle_user_query(user_query):\n",
    "    try:\n",
    "        response = agent.handle_query(user_query)\n",
    "        logger.info(f\"Assistant's message: {response}\")\n",
    "        # Render the Markdown response to HTML with chat bubble layout\n",
    "        user_html = render_markdown(user_query, is_user=True)\n",
    "        assistant_html = render_markdown(response, is_user=False)\n",
    "        chat_html = f\"\"\"\n",
    "        <div class=\"chat-container\">\n",
    "            {user_html}\n",
    "            {assistant_html}\n",
    "        </div>\n",
    "        \"\"\"\n",
    "        return chat_html\n",
    "    except Exception as e:\n",
    "        logger.error(f\"Error handling user query: {e}\")\n",
    "        return \"Sorry, I encountered an error. Please try again.\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chatbot UI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\ISO LTD\\U-chatbot\\myenv\\Lib\\site-packages\\gradio\\components\\chatbot.py:285: UserWarning: You have not specified a value for the `type` parameter. Defaulting to the 'tuples' format for chatbot messages, but this is deprecated and will be removed in a future version of Gradio. Please set type='messages' instead, which uses openai-style dictionaries with 'role' and 'content' keys.\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7860\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2025-02-27 11:46:33 - INFO - HTTP Request: GET https://api.gradio.app/pkg-version \"HTTP/1.1 200 OK\"\n",
      "2025-02-27 11:46:34 - INFO - HTTP Request: GET http://127.0.0.1:7860/gradio_api/startup-events \"HTTP/1.1 200 OK\"\n",
      "2025-02-27 11:46:34 - INFO - HTTP Request: HEAD http://127.0.0.1:7860/ \"HTTP/1.1 200 OK\"\n",
      "2025-02-27 11:46:42 - INFO - HTTP Request: GET https://api.gradio.app/v3/tunnel-request \"HTTP/1.1 200 OK\"\n",
      "2025-02-27 11:46:44 - INFO - HTTP Request: GET https://cdn-media.huggingface.co/frpc-gradio-0.3/frpc_windows_amd64.exe \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Could not create share link. Please check your internet connection or our status page: https://status.gradio.app.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "'\\nNote:\\nIf you are running this chatbot on your own feel free to add parameter of `debug=True` in launch() so that you can be able to handle any bugs asap\\nHappy coding *_*\\n'"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Ui\n",
    "# Gradio Interface with Interstellar theme\n",
    "with gr.Blocks(theme='ParityError/Interstellar') as demo:\n",
    "    chatbot = gr.Chatbot([], label=\"Chat with Unica\")\n",
    "    user_input = gr.Textbox(lines=2, placeholder=\"Ask your study-related questions here\", label=\"Your Message\")\n",
    "\n",
    "    def respond(user_message, history):\n",
    "        response = agent.handle_query(user_message)\n",
    "        history.append((user_message, response))\n",
    "        return history, \"\"\n",
    "\n",
    "    user_input.submit(respond, [user_input, chatbot], [chatbot, user_input])\n",
    "\n",
    "if __name__ == \"__main__\":\n",
    "    demo.launch(pwa=True, share=True)\n",
    "\n",
    "'''\n",
    "Note:\n",
    "If you are running this chatbot on your own feel free to add parameter of `debug=True` in launch() so that you can be able to handle any bugs asap\n",
    "Happy coding *_*\n",
    "'''\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Farewell \n",
    "To be able to interact with the `Moodle` as plugin, i believe we can use the *iframe* and then insert it as HTML but we can also try deploying it on the `HuggingFace` and then use `API` to interact with it.\n",
    "Lemme try all the ways to see what can be so cool and efficient to the user ^_^ ."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}