Spaces:
Running
Running
File size: 11,349 Bytes
139af8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import altair as alt
import google.generativeai as genai
from datetime import datetime
import os
import re
import json
# App title and configuration
st.set_page_config(page_title="Expense Tracker", layout="wide")
# Initialize session state
if 'expenses' not in st.session_state:
st.session_state.expenses = []
if 'df' not in st.session_state:
st.session_state.df = pd.DataFrame(columns=['Date', 'Category', 'Amount', 'Description'])
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
# Load Gemini API key from secrets
def configure_genai():
# For local development, use st.secrets
# For Hugging Face deployment, use environment variables
if 'GEMINI_API_KEY' in st.secrets:
api_key = st.secrets['GEMINI_API_KEY']
else:
api_key = os.environ.get('GEMINI_API_KEY')
if not api_key:
st.error("Gemini API key not found. Please add it to the secrets or environment variables.")
st.stop()
genai.configure(api_key=api_key)
return genai.GenerativeModel('gemini-2.0-flash')
model = configure_genai()
# Function to extract expense data using Gemini
def extract_expense_data(text):
prompt = f"""
Extract expense information from the following text.
Return a JSON object with these fields:
- date: in YYYY-MM-DD format (use today's date if not specified)
- category: the expense category (e.g., food, transport, entertainment)
- amount: the numerical amount (just the number, no currency symbol)
- description: brief description of the expense
Example output format:
{{
"date": "2025-03-19",
"category": "food",
"amount": 25.50,
"description": "lunch at cafe"
}}
If multiple expenses are mentioned, return an array of such objects.
Text: {text}
"""
try:
response = model.generate_content(prompt)
response_text = response.text
# Extract JSON from the response
json_match = re.search(r'```json\n(.*?)```', response_text, re.DOTALL)
if json_match:
json_str = json_match.group(1)
else:
# If no code block, try to find JSON directly
json_str = response_text
# Parse the JSON
data = json.loads(json_str)
return data
except Exception as e:
st.error(f"Error extracting expense data: {e}")
return None
# Function to add expenses to the dataframe
def add_expense_to_df(expense_data):
if isinstance(expense_data, list):
# Handle multiple expenses
for expense in expense_data:
add_single_expense(expense)
else:
# Handle single expense
add_single_expense(expense_data)
# Sort by date
st.session_state.df = st.session_state.df.sort_values(by='Date', ascending=False)
def add_single_expense(expense):
# Convert amount to float
try:
amount = float(expense['amount'])
except:
amount = 0.0
# Create a new row
new_row = pd.DataFrame({
'Date': [expense.get('date', datetime.now().strftime('%Y-%m-%d'))],
'Category': [expense.get('category', 'Other')],
'Amount': [amount],
'Description': [expense.get('description', '')]
})
# Append to the dataframe
st.session_state.df = pd.concat([st.session_state.df, new_row], ignore_index=True)
# Function to get AI insights about expenses
def get_expense_insights(query):
if st.session_state.df.empty:
return "No expense data available yet. Please add some expenses first."
# Convert dataframe to string representation
df_str = st.session_state.df.to_string()
prompt = f"""
Here is a dataset of expenses:
{df_str}
User query: {query}
Please analyze this expense data and answer the query.
Provide your analysis in a clear and concise way.
If the query is about visualizations, describe what kind of chart would be helpful.
"""
try:
response = model.generate_content(prompt)
return response.text
except Exception as e:
return f"Error getting insights: {e}"
# Function to create visualizations
def create_visualizations():
if st.session_state.df.empty:
st.info("Add some expenses to see visualizations")
return
# Create a copy of the dataframe for visualization
df = st.session_state.df.copy()
# Ensure Date is datetime
df['Date'] = pd.to_datetime(df['Date'])
# Create tabs for different visualizations
tab1, tab2, tab3 = st.tabs(["Expenses by Category", "Expenses Over Time", "Recent Expenses"])
with tab1:
st.subheader("Expenses by Category")
category_totals = df.groupby('Category')['Amount'].sum().reset_index()
# Create a pie chart
fig, ax = plt.subplots(figsize=(8, 8))
ax.pie(category_totals['Amount'], labels=category_totals['Category'], autopct='%1.1f%%')
ax.set_title('Expenses by Category')
st.pyplot(fig)
# Create a bar chart
category_chart = alt.Chart(category_totals).mark_bar().encode(
x=alt.X('Category:N', sort='-y'),
y=alt.Y('Amount:Q'),
color='Category:N'
).properties(
title='Total Expenses by Category'
)
st.altair_chart(category_chart, use_container_width=True)
with tab2:
st.subheader("Expenses Over Time")
# Group by date and sum amounts
daily_totals = df.groupby(df['Date'].dt.date)['Amount'].sum().reset_index()
# Create a line chart
time_chart = alt.Chart(daily_totals).mark_line(point=True).encode(
x='Date:T',
y='Amount:Q',
tooltip=['Date:T', 'Amount:Q']
).properties(
title='Daily Expenses Over Time'
)
st.altair_chart(time_chart, use_container_width=True)
with tab3:
st.subheader("Recent Expenses")
# Sort by date and get the last 10 expenses
recent = df.sort_values('Date', ascending=False).head(10)
# Create a bar chart
recent_chart = alt.Chart(recent).mark_bar().encode(
x=alt.X('Description:N', sort='-y'),
y='Amount:Q',
color='Category:N',
tooltip=['Date:T', 'Category:N', 'Amount:Q', 'Description:N']
).properties(
title='Most Recent Expenses'
)
st.altair_chart(recent_chart, use_container_width=True)
# App layout
st.title("💰 Expense Tracker with AI")
# Sidebar for app navigation
page = st.sidebar.radio("Navigation", ["Add Expenses", "View & Analyze", "Chat with your Data"])
if page == "Add Expenses":
st.header("Add Your Expenses")
st.write("Describe your expenses in natural language, and AI will extract the details.")
with st.form("expense_form"):
user_input = st.text_area(
"Enter your expenses:",
height=100,
placeholder="Example: I spent $25 on lunch today, $15 on transport yesterday, and $50 on groceries on March 15th"
)
submit_button = st.form_submit_button("Add Expenses")
if submit_button and user_input:
with st.spinner("Processing your expenses..."):
expense_data = extract_expense_data(user_input)
if expense_data:
add_expense_to_df(expense_data)
st.success("Expenses added successfully!")
st.write("Extracted information:")
st.json(expense_data)
else:
st.error("Failed to extract expense data. Please try again with a clearer description.")
# Show the current expenses
if not st.session_state.df.empty:
st.subheader("Your Recent Expenses")
st.dataframe(st.session_state.df.sort_values(by='Date', ascending=False), use_container_width=True)
elif page == "View & Analyze":
st.header("Your Expense Data")
# Show the current expenses as a table
if not st.session_state.df.empty:
st.dataframe(st.session_state.df.sort_values(by='Date', ascending=False), use_container_width=True)
# Add download button
csv = st.session_state.df.to_csv(index=False)
st.download_button(
label="Download CSV",
data=csv,
file_name="expenses.csv",
mime="text/csv"
)
# Show summary statistics
st.subheader("Summary Statistics")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Expenses", f"${st.session_state.df['Amount'].sum():.2f}")
with col2:
st.metric("Average Expense", f"${st.session_state.df['Amount'].mean():.2f}")
with col3:
st.metric("Number of Expenses", f"{len(st.session_state.df)}")
# Create visualizations
st.subheader("Visualizations")
create_visualizations()
else:
st.info("No expense data available yet. Please add some expenses first.")
elif page == "Chat with your Data":
st.header("Chat with Your Expense Data")
if st.session_state.df.empty:
st.info("No expense data available yet. Please add some expenses first.")
else:
st.write("Ask questions about your expenses to get insights.")
# Display chat history
for message in st.session_state.chat_history:
with st.chat_message(message["role"]):
st.write(message["content"])
# Get user input
user_query = st.chat_input("Ask about your expenses...")
if user_query:
# Add user message to chat history
st.session_state.chat_history.append({"role": "user", "content": user_query})
# Display user message
with st.chat_message("user"):
st.write(user_query)
# Get AI response
with st.spinner("Thinking..."):
response = get_expense_insights(user_query)
# Add AI response to chat history
st.session_state.chat_history.append({"role": "assistant", "content": response})
# Display AI response
with st.chat_message("assistant"):
st.write(response)
# Add instructions for Hugging Face deployment in the sidebar
with st.sidebar.expander("Deployment Instructions"):
st.write("""
### How to deploy to Hugging Face:
1. Save this code as `app.py`
2. Create a `requirements.txt` file with these dependencies:
```
streamlit
pandas
matplotlib
seaborn
altair
google-generativeai
```
3. Create a `README.md` file describing your app
4. Add your Gemini API key to your Hugging Face Space secrets with the name `GEMINI_API_KEY`
5. Push your code to a GitHub repository
6. Create a new Hugging Face Space, select Streamlit as the SDK, and connect your GitHub repository
""")
# Bottom credits
st.sidebar.markdown("---")
st.sidebar.caption("Built with Streamlit and Gemini AI") |