File size: 27,601 Bytes
33e8c89 035c4af 33e8c89 035c4af 33e8c89 035c4af 33e8c89 035c4af 33e8c89 035c4af 33e8c89 035c4af 33e8c89 035c4af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 |
import streamlit as st
import json
import pandas as pd
from agents.orchestrator import ProfileOrchestrator
from agents.scraper_agent import ScraperAgent
from agents.content_agent import ContentAgent
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime
# Configure Streamlit page
st.set_page_config(
page_title="π LinkedIn Profile Enhancer",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better styling
st.markdown("""
<style>
.main-header {
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
padding: 2rem;
border-radius: 10px;
color: white;
text-align: center;
margin-bottom: 2rem;
}
.metric-card {
background: #f8f9fa;
padding: 1rem;
border-radius: 8px;
border-left: 4px solid #667eea;
margin: 0.5rem 0;
}
.success-card {
background: #d4edda;
padding: 1rem;
border-radius: 8px;
border-left: 4px solid #28a745;
margin: 0.5rem 0;
}
.warning-card {
background: #fff3cd;
padding: 1rem;
border-radius: 8px;
border-left: 4px solid #ffc107;
margin: 0.5rem 0;
}
.info-card {
background: #e7f3ff;
padding: 1rem;
border-radius: 8px;
border-left: 4px solid #17a2b8;
margin: 0.5rem 0;
}
.stTabs > div > div > div > div {
padding: 1rem;
}
.profile-section {
background: white;
padding: 1.5rem;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
def initialize_session_state():
"""Initialize session state variables"""
if 'orchestrator' not in st.session_state:
st.session_state.orchestrator = ProfileOrchestrator()
if 'analysis_results' not in st.session_state:
st.session_state.analysis_results = None
if 'profile_data' not in st.session_state:
st.session_state.profile_data = None
if 'suggestions' not in st.session_state:
st.session_state.suggestions = None
if 'current_url' not in st.session_state:
st.session_state.current_url = None
def clear_results_if_url_changed(linkedin_url):
"""Clear cached results if URL has changed"""
if st.session_state.current_url != linkedin_url:
st.session_state.analysis_results = None
st.session_state.profile_data = None
st.session_state.suggestions = None
st.session_state.current_url = linkedin_url
st.cache_data.clear() # Clear any Streamlit cache
print(f"π URL changed to: {linkedin_url} - Clearing cached data")
def create_header():
"""Create the main header"""
st.markdown("""
<div class="main-header">
<h1>π LinkedIn Profile Enhancer</h1>
<p style="font-size: 1.2em; margin: 1rem 0;">AI-powered LinkedIn profile analysis and enhancement suggestions</p>
<div style="display: flex; justify-content: center; gap: 2rem; margin-top: 1rem;">
<div style="text-align: center;">
<div style="font-size: 2em;">π</div>
<div>Real Scraping</div>
</div>
<div style="text-align: center;">
<div style="font-size: 2em;">π€</div>
<div>AI Analysis</div>
</div>
<div style="text-align: center;">
<div style="font-size: 2em;">π―</div>
<div>Smart Suggestions</div>
</div>
<div style="text-align: center;">
<div style="font-size: 2em;">π</div>
<div>Data Insights</div>
</div>
</div>
</div>
""", unsafe_allow_html=True)
def create_sidebar():
"""Create the sidebar with input controls"""
with st.sidebar:
st.header("π Configuration")
# LinkedIn URL input
linkedin_url = st.text_input(
"π LinkedIn Profile URL",
placeholder="https://linkedin.com/in/your-profile",
help="Enter the full LinkedIn profile URL to analyze"
)
# Job description input
job_description = st.text_area(
"π― Target Job Description (Optional)",
placeholder="Paste the job description here for tailored suggestions...",
height=150,
help="Include job description for personalized optimization"
)
# API Status
st.subheader("π API Status")
# Test API connections
if st.button("π Test Connections"):
with st.spinner("Testing API connections..."):
# Test Apify
try:
scraper = ScraperAgent()
apify_status = scraper.test_apify_connection()
if apify_status:
st.success("β
Apify: Connected")
else:
st.error("β Apify: Failed")
except Exception as e:
st.error(f"β Apify: Error - {str(e)}")
# Test OpenAI
try:
content_agent = ContentAgent()
openai_status = content_agent.test_openai_connection()
if openai_status:
st.success("β
OpenAI: Connected")
else:
st.error("β OpenAI: Failed")
except Exception as e:
st.error(f"β OpenAI: Error - {str(e)}")
# Examples
st.subheader("π‘ Example URLs")
example_urls = [
"https://linkedin.com/in/example-profile",
"https://www.linkedin.com/in/sample-user"
]
for url in example_urls:
if st.button(f"π {url.split('/')[-1]}", key=url):
st.session_state.example_url = url
return linkedin_url, job_description
def create_metrics_display(analysis):
"""Create metrics display"""
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric(
"π Completeness Score",
f"{analysis.get('completeness_score', 0):.1f}%",
delta=None
)
with col2:
rating = analysis.get('overall_rating', 'Unknown')
st.metric(
"β Overall Rating",
rating,
delta=None
)
with col3:
st.metric(
"π― Job Match Score",
f"{analysis.get('job_match_score', 0):.1f}%",
delta=None
)
with col4:
keywords = analysis.get('keyword_analysis', {})
found_count = len(keywords.get('found_keywords', []))
st.metric(
"π Keywords Found",
found_count,
delta=None
)
def create_analysis_charts(analysis):
"""Create analysis charts"""
col1, col2 = st.columns(2)
with col1:
# Completeness breakdown
scores = {
'Profile Info': 20,
'About Section': 25,
'Experience': 25,
'Skills': 15,
'Education': 15
}
fig_pie = px.pie(
values=list(scores.values()),
names=list(scores.keys()),
title="Profile Section Weights",
color_discrete_sequence=px.colors.qualitative.Set3
)
fig_pie.update_layout(height=400)
st.plotly_chart(fig_pie, use_container_width=True)
with col2:
# Score comparison
current_score = analysis.get('completeness_score', 0)
target_score = 90
fig_gauge = go.Figure(go.Indicator(
mode = "gauge+number+delta",
value = current_score,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': "Profile Completeness"},
delta = {'reference': target_score, 'increasing': {'color': "green"}},
gauge = {
'axis': {'range': [None, 100]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 50], 'color': "lightgray"},
{'range': [50, 80], 'color': "gray"},
{'range': [80, 100], 'color': "lightgreen"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 90
}
}
))
fig_gauge.update_layout(height=400)
st.plotly_chart(fig_gauge, use_container_width=True)
def display_profile_data(profile_data):
"""Display scraped profile data in a structured format"""
if not profile_data:
st.warning("No profile data available")
return
# Profile Header with Image
st.subheader("π€ Profile Overview")
# Create columns for profile image and basic info
col1, col2, col3 = st.columns([1, 2, 2])
with col1:
# Display profile image
profile_image = profile_data.get('profile_image_hq') or profile_data.get('profile_image')
if profile_image:
st.image(profile_image, width=150, caption="Profile Picture")
else:
st.markdown("""
<div style="width: 150px; height: 150px; background-color: #f0f0f0; border-radius: 50%;
display: flex; align-items: center; justify-content: center; font-size: 48px;">
π€
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown(f"""
<div class="info-card">
<strong>Name:</strong> {profile_data.get('name', 'N/A')}<br>
<strong>Headline:</strong> {profile_data.get('headline', 'N/A')}<br>
<strong>Location:</strong> {profile_data.get('location', 'N/A')}<br>
<strong>Connections:</strong> {profile_data.get('connections', 'N/A')}<br>
<strong>Followers:</strong> {profile_data.get('followers', 'N/A')}
</div>
""", unsafe_allow_html=True)
with col3:
st.markdown(f"""
<div class="info-card">
<strong>Current Job:</strong> {profile_data.get('job_title', 'N/A')}<br>
<strong>Company:</strong> {profile_data.get('company_name', 'N/A')}<br>
<strong>Industry:</strong> {profile_data.get('company_industry', 'N/A')}<br>
<strong>Email:</strong> {profile_data.get('email', 'N/A')}<br>
<strong>Profile URL:</strong> <a href="{profile_data.get('url', '#')}" target="_blank">View Profile</a>
</div>
""", unsafe_allow_html=True)
# About Section
if profile_data.get('about'):
st.subheader("π About Section")
st.markdown(f"""
<div class="profile-section">
{profile_data.get('about', 'No about section available')}
</div>
""", unsafe_allow_html=True)
# Experience
if profile_data.get('experience'):
st.subheader("πΌ Experience")
for i, exp in enumerate(profile_data.get('experience', [])):
with st.expander(f"{exp.get('title', 'Position')} at {exp.get('company', 'Company')}", expanded=i==0):
col1, col2 = st.columns([2, 1])
with col1:
st.write(f"**Duration:** {exp.get('duration', 'N/A')}")
st.write(f"**Location:** {exp.get('location', 'N/A')}")
if exp.get('description'):
st.write("**Description:**")
st.write(exp.get('description'))
with col2:
st.write(f"**Current Role:** {'Yes' if exp.get('is_current') else 'No'}")
# Skills
if profile_data.get('skills'):
st.subheader("π οΈ Skills")
skills = profile_data.get('skills', [])
if skills:
# Create a DataFrame for better display
skills_df = pd.DataFrame({'Skills': skills})
st.dataframe(skills_df, use_container_width=True)
# Education
if profile_data.get('education'):
st.subheader("π Education")
for edu in profile_data.get('education', []):
st.markdown(f"""
<div class="info-card">
<strong>{edu.get('degree', 'Degree')}</strong><br>
{edu.get('school', 'School')} | {edu.get('field', 'Field')}<br>
<em>{edu.get('year', 'Year')}</em>
</div>
""", unsafe_allow_html=True)
# Raw Data (collapsible)
with st.expander("π Raw JSON Data"):
st.json(profile_data)
def display_analysis_results(analysis):
"""Display analysis results"""
if not analysis:
st.warning("No analysis results available")
return
# Metrics
create_metrics_display(analysis)
# Charts
st.subheader("π Analysis Visualization")
create_analysis_charts(analysis)
# Strengths and Weaknesses
col1, col2 = st.columns(2)
with col1:
st.subheader("π Profile Strengths")
strengths = analysis.get('strengths', [])
if strengths:
for strength in strengths:
st.markdown(f"""
<div class="success-card">
β
{strength}
</div>
""", unsafe_allow_html=True)
else:
st.info("No specific strengths identified")
with col2:
st.subheader("π§ Areas for Improvement")
weaknesses = analysis.get('weaknesses', [])
if weaknesses:
for weakness in weaknesses:
st.markdown(f"""
<div class="warning-card">
πΈ {weakness}
</div>
""", unsafe_allow_html=True)
else:
st.success("No major areas for improvement identified")
# Keyword Analysis
keyword_analysis = analysis.get('keyword_analysis', {})
if keyword_analysis:
st.subheader("π Keyword Analysis")
col1, col2 = st.columns(2)
with col1:
found_keywords = keyword_analysis.get('found_keywords', [])
if found_keywords:
st.write("**Keywords Found:**")
st.write(", ".join(found_keywords[:10]))
with col2:
missing_keywords = keyword_analysis.get('missing_keywords', [])
if missing_keywords:
st.write("**Missing Keywords:**")
st.write(", ".join(missing_keywords[:5]))
def generate_suggestions_markdown(suggestions, profile_data=None):
"""Generate markdown content from suggestions"""
if not suggestions:
return "# LinkedIn Profile Enhancement Suggestions\n\nNo suggestions available."
# Get profile name for personalization
profile_name = profile_data.get('name', 'Your Profile') if profile_data else 'Your Profile'
current_date = datetime.now().strftime("%B %d, %Y")
markdown_content = f"""# LinkedIn Profile Enhancement Suggestions
**Profile:** {profile_name}
**Generated on:** {current_date}
**Powered by:** LinkedIn Profile Enhancer AI
---
## π Table of Contents
"""
# Add table of contents
toc_items = []
for category in suggestions.keys():
if category == 'ai_generated_content':
toc_items.append("- [π€ AI-Generated Content Suggestions](#ai-generated-content-suggestions)")
else:
category_name = category.replace('_', ' ').title()
toc_items.append(f"- [π {category_name}](#{category.replace('_', '-').lower()})")
markdown_content += "\n".join(toc_items) + "\n\n---\n\n"
# Add suggestions content
for category, items in suggestions.items():
if category == 'ai_generated_content':
markdown_content += "## π€ AI-Generated Content Suggestions\n\n"
ai_content = items if isinstance(items, dict) else {}
# Headlines
if 'ai_headlines' in ai_content and ai_content['ai_headlines']:
markdown_content += "### β¨ Professional Headlines\n\n"
for i, headline in enumerate(ai_content['ai_headlines'], 1):
cleaned_headline = headline.strip('"').replace('\\"', '"')
if cleaned_headline.startswith(('1.', '2.', '3.', '4.', '5.')):
cleaned_headline = cleaned_headline[2:].strip()
markdown_content += f"{i}. {cleaned_headline}\n"
markdown_content += "\n"
# About Section
if 'ai_about_section' in ai_content and ai_content['ai_about_section']:
markdown_content += "### π Enhanced About Section\n\n"
markdown_content += f"```\n{ai_content['ai_about_section']}\n```\n\n"
# Experience Descriptions
if 'ai_experience_descriptions' in ai_content and ai_content['ai_experience_descriptions']:
markdown_content += "### πΌ Experience Description Ideas\n\n"
for desc in ai_content['ai_experience_descriptions']:
markdown_content += f"- {desc}\n"
markdown_content += "\n"
else:
# Standard categories
category_name = category.replace('_', ' ').title()
markdown_content += f"## π {category_name}\n\n"
if isinstance(items, list):
for item in items:
markdown_content += f"- {item}\n"
else:
markdown_content += f"- {items}\n"
markdown_content += "\n"
# Add footer
markdown_content += """---
## π Implementation Tips
### Getting Started
1. **Prioritize High-Impact Changes**: Start with headline and about section improvements
2. **Use Keywords Strategically**: Incorporate industry-relevant keywords naturally
3. **Maintain Authenticity**: Ensure all changes reflect your genuine experience and personality
4. **Regular Updates**: Keep your profile fresh with recent achievements and experiences
### Best Practices
- **Professional Photo**: Use a high-quality, professional headshot
- **Active Engagement**: Regularly share industry insights and engage with your network
- **Skills Endorsements**: Ask colleagues to endorse your key skills
- **Recommendations**: Request recommendations from supervisors and colleagues
- **Content Strategy**: Share articles, insights, and achievements regularly
### Measuring Success
- Monitor profile views and connection requests
- Track engagement on your posts and content
- Observe changes in recruiter outreach
- Measure network growth and quality
---
*This report was generated by LinkedIn Profile Enhancer AI. For best results, implement changes gradually and monitor their impact on your profile performance.*
**Need Help?** Contact support or revisit the LinkedIn Profile Enhancer tool for updated suggestions.
"""
return markdown_content
def display_suggestions(suggestions):
"""Display enhancement suggestions with download option"""
if not suggestions:
st.warning("No suggestions available")
return
# Add download button at the top
col1, col2 = st.columns([1, 4])
with col1:
# Generate markdown content
markdown_content = generate_suggestions_markdown(
suggestions,
st.session_state.get('profile_data')
)
# Create filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
profile_name = ""
if st.session_state.get('profile_data'):
name = st.session_state.profile_data.get('name', '')
if name:
# Clean name for filename
profile_name = "".join(c for c in name if c.isalnum() or c in (' ', '_')).rstrip()
profile_name = profile_name.replace(' ', '_') + "_"
filename = f"linkedin_suggestions_{profile_name}{timestamp}.md"
st.download_button(
label="π₯ Download Suggestions",
data=markdown_content,
file_name=filename,
mime="text/markdown",
help="Download all suggestions as a markdown file",
use_container_width=True
)
with col2:
st.markdown("*π‘ Click the download button to save all suggestions as a markdown file for easy reference and implementation.*")
st.markdown("---")
# Display suggestions as before
for category, items in suggestions.items():
if category == 'ai_generated_content':
st.subheader("π€ AI-Generated Content Suggestions")
ai_content = items if isinstance(items, dict) else {}
# Headlines
if 'ai_headlines' in ai_content and ai_content['ai_headlines']:
st.write("**β¨ Professional Headlines:**")
for i, headline in enumerate(ai_content['ai_headlines'], 1):
cleaned_headline = headline.strip('"').replace('\\"', '"')
if cleaned_headline.startswith(('1.', '2.', '3.', '4.', '5.')):
cleaned_headline = cleaned_headline[2:].strip()
st.write(f"{i}. {cleaned_headline}")
st.write("")
# About Section
if 'ai_about_section' in ai_content and ai_content['ai_about_section']:
st.write("**π Enhanced About Section:**")
st.code(ai_content['ai_about_section'], language='text')
st.write("")
# Experience Descriptions
if 'ai_experience_descriptions' in ai_content and ai_content['ai_experience_descriptions']:
st.write("**πΌ Experience Description Ideas:**")
for desc in ai_content['ai_experience_descriptions']:
st.write(f"β’ {desc}")
st.write("")
else:
# Standard categories
category_name = category.replace('_', ' ').title()
st.subheader(f"π {category_name}")
if isinstance(items, list):
for item in items:
st.write(f"β’ {item}")
else:
st.write(f"β’ {items}")
st.write("")
def main():
"""Main Streamlit application"""
initialize_session_state()
create_header()
# Sidebar
linkedin_url, job_description = create_sidebar()
# Main content
if st.button("π Enhance Profile", type="primary", use_container_width=True):
if not linkedin_url.strip():
st.error("Please enter a LinkedIn profile URL")
elif not any(pattern in linkedin_url.lower() for pattern in ['linkedin.com/in/', 'www.linkedin.com/in/']):
st.error("Please enter a valid LinkedIn profile URL")
else:
# Clear cached data if URL has changed
clear_results_if_url_changed(linkedin_url)
with st.spinner("π Analyzing LinkedIn profile..."):
try:
st.info(f"π Extracting data from: {linkedin_url}")
# Get profile data and analysis (force fresh extraction)
profile_data = st.session_state.orchestrator.scraper.extract_profile_data(linkedin_url)
st.info(f"β
Profile data extracted for: {profile_data.get('name', 'Unknown')}")
analysis = st.session_state.orchestrator.analyzer.analyze_profile(profile_data, job_description)
suggestions = st.session_state.orchestrator.content_generator.generate_suggestions(analysis, job_description)
# Store in session state
st.session_state.profile_data = profile_data
st.session_state.analysis_results = analysis
st.session_state.suggestions = suggestions
st.success("β
Profile analysis completed!")
except Exception as e:
st.error(f"β Error analyzing profile: {str(e)}")
# Display results if available
if st.session_state.profile_data or st.session_state.analysis_results:
st.markdown("---")
# Create tabs for different views
tab1, tab2, tab3, tab4 = st.tabs(["π Analysis", "π Scraped Data", "π― Suggestions", "π Implementation"])
with tab1:
st.header("π Profile Analysis")
if st.session_state.analysis_results:
display_analysis_results(st.session_state.analysis_results)
else:
st.info("No analysis results available yet")
with tab2:
st.header("π Scraped Profile Data")
if st.session_state.profile_data:
display_profile_data(st.session_state.profile_data)
else:
st.info("No profile data available yet")
with tab3:
st.header("π― Enhancement Suggestions")
if st.session_state.suggestions:
display_suggestions(st.session_state.suggestions)
else:
st.info("No suggestions available yet")
with tab4:
st.header("π Implementation Roadmap")
if st.session_state.analysis_results:
recommendations = st.session_state.analysis_results.get('recommendations', [])
if recommendations:
st.subheader("π― Priority Actions")
for i, rec in enumerate(recommendations[:5], 1):
st.markdown(f"""
<div class="metric-card">
<strong>{i}.</strong> {rec}
</div>
""", unsafe_allow_html=True)
st.subheader("π General Best Practices")
best_practices = [
"Update your profile regularly with new achievements",
"Use professional keywords relevant to your industry",
"Engage with your network by sharing valuable content",
"Ask for recommendations from colleagues and clients",
"Monitor profile views and connection requests"
]
for practice in best_practices:
st.markdown(f"""
<div class="info-card">
πΈ {practice}
</div>
""", unsafe_allow_html=True)
else:
st.info("Complete the analysis first to see implementation suggestions")
# Footer
st.markdown("---")
st.markdown("""
<div style="text-align: center; color: #666; margin-top: 2rem;">
<p>π <strong>LinkedIn Profile Enhancer</strong> | Powered by AI | Data scraped with respect to LinkedIn's ToS</p>
<p>Built with β€οΈ using Streamlit, OpenAI GPT-4o-mini, and Apify</p>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main() |