Spaces:
Running
Running
File size: 16,831 Bytes
0065413 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import os
import sys
# to avoid the modified user.pth file
cnhubert_base_path = "GPT_SoVITS\pretrained_models\chinese-hubert-base"
bert_path = "GPT_SoVITS\pretrained_models\chinese-roberta-wwm-ext-large"
os.environ["version"] = 'v2'
now_dir = os.getcwd()
sys.path.insert(0, now_dir)
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
from pathlib import Path
import os,librosa,torch, audiosegment
from scipy.io.wavfile import write as wavwrite
from GPT_SoVITS.feature_extractor import cnhubert
cnhubert.cnhubert_base_path=cnhubert_base_path
from GPT_SoVITS.module.models import SynthesizerTrn
from GPT_SoVITS.AR.models.t2s_lightning_module import Text2SemanticLightningModule
from GPT_SoVITS.text import cleaned_text_to_sequence
from GPT_SoVITS.text.cleaner import clean_text
from time import time as ttime
from GPT_SoVITS.module.mel_processing import spectrogram_torch
import tempfile
from tools.my_utils import load_audio
import os
import json
################ End strange import and user.pth modification ################
# import pyopenjtalk
# cwd = os.getcwd()
# if os.path.exists(os.path.join(cwd,'user.dic')):
# pyopenjtalk.update_global_jtalk_with_user_dict(os.path.join(cwd, 'user.dic'))
import logging
logging.getLogger('httpx').setLevel(logging.WARNING)
logging.getLogger('httpcore').setLevel(logging.WARNING)
logging.getLogger('multipart').setLevel(logging.WARNING)
device = "cuda" if torch.cuda.is_available() else "cpu"
#device = "cpu"
is_half = False
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model=AutoModelForMaskedLM.from_pretrained(bert_path)
if(is_half==True):bert_model=bert_model.half().to(device)
else:bert_model=bert_model.to(device)
# bert_model=bert_model.to(device)
def get_bert_feature(text, word2ph): # Bert(不是HuBERT的特征计算)
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)#####输入是long不用管精度问题,精度随bert_model
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
# if(is_half==True):phone_level_feature=phone_level_feature.half()
return phone_level_feature.T
loaded_sovits_model = [] # [(path, dict, model)]
loaded_gpt_model = []
ssl_model = cnhubert.get_model()
if (is_half == True):
ssl_model = ssl_model.half().to(device)
else:
ssl_model = ssl_model.to(device)
def load_model(sovits_path, gpt_path):
global ssl_model
global loaded_sovits_model
global loaded_gpt_model
vq_model = None
t2s_model = None
dict_s2 = None
dict_s1 = None
hps = None
for path, dict_s2_, model in loaded_sovits_model:
if path == sovits_path:
vq_model = model
dict_s2 = dict_s2_
break
for path, dict_s1_, model in loaded_gpt_model:
if path == gpt_path:
t2s_model = model
dict_s1 = dict_s1_
break
if dict_s2 is None:
dict_s2 = torch.load(sovits_path, map_location="cpu")
hps = dict_s2["config"]
if dict_s1 is None:
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
class DictToAttrRecursive:
def __init__(self, input_dict):
for key, value in input_dict.items():
if isinstance(value, dict):
# 如果值是字典,递归调用构造函数
setattr(self, key, DictToAttrRecursive(value))
else:
setattr(self, key, value)
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
if not vq_model:
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
if (is_half == True):
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
vq_model.load_state_dict(dict_s2["weight"], strict=False)
loaded_sovits_model.append((sovits_path, dict_s2, vq_model))
hz = 50
max_sec = config['data']['max_sec']
if not t2s_model:
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if (is_half == True): t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
loaded_gpt_model.append((gpt_path, dict_s1, t2s_model))
return vq_model, ssl_model, t2s_model, hps, config, hz, max_sec
def get_spepc(hps, filename):
audio=load_audio(filename,int(hps.data.sampling_rate))
audio = audio / np.max(np.abs(audio))
audio=torch.FloatTensor(audio)
audio_norm = audio
# audio_norm = audio / torch.max(torch.abs(audio))
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False)
return spec
def create_tts_fn(vq_model, ssl_model, t2s_model, hps, config, hz, max_sec):
def tts_fn(ref_wav_path, prompt_text, prompt_language, target_phone, text_language, target_text = None):
t0 = ttime()
prompt_text=prompt_text.strip()
prompt_language=prompt_language
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000, mono=False)
direction = np.array([1,1])
if wav16k.ndim == 2:
power = np.sum(np.abs(wav16k) ** 2, axis=1)
direction = power / np.sum(power)
wav16k = (wav16k[0] + wav16k[1]) / 2
#
# maxx=0.95
# tmp_max = np.abs(wav16k).max()
# alpha=0.5
# wav16k = (wav16k / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * wav16k
#在这里归一化
#print(max(np.abs(wav16k)))
#wav16k = wav16k / np.max(np.abs(wav16k))
#print(max(np.abs(wav16k)))
# 添加0.3s的静音
wav16k = np.concatenate([wav16k, np.zeros(int(hps.data.sampling_rate * 0.3)),])
wav16k = torch.from_numpy(wav16k)
wav16k = wav16k.float()
if(is_half==True):wav16k=wav16k.half().to(device)
else:wav16k=wav16k.to(device)
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)#.float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
t1 = ttime()
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
phones1=cleaned_text_to_sequence(phones1)
#texts=text.split("\n")
audio_opt = []
zero_wav=np.zeros((2, int(hps.data.sampling_rate*0.3)),dtype=np.float16 if is_half==True else np.float32)
phones = get_phone_from_str_list(target_phone, text_language)
for phones2 in phones:
if(len(phones2) == 0):
continue
if(len(phones2) == 1 and phones2[0] == ""):
continue
#phones2, word2ph2, norm_text2 = clean_text(text, text_language)
phones2 = cleaned_text_to_sequence(phones2)
#if(prompt_language=="zh"):bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device)
#if(text_language=="zh"):bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
bert2 = torch.zeros((1024, len(phones2))).to(bert1)
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
prompt = prompt_semantic.unsqueeze(0).to(device)
t2 = ttime()
idx = 0
cnt = 0
while idx == 0 and cnt < 2:
with torch.no_grad():
# pred_semantic = t2s_model.model.infer
pred_semantic,idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
prompt,
bert,
# prompt_phone_len=ph_offset,
top_k=config['inference']['top_k'],
early_stop_num=hz * max_sec)
t3 = ttime()
cnt+=1
if idx == 0:
return "Error: Generation failure: bad zero prediction.", None
pred_semantic = pred_semantic[:,-idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次
refer = get_spepc(hps, ref_wav_path)#.to(device)
if(is_half==True):refer=refer.half().to(device)
else:refer=refer.to(device)
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]###试试重建不带上prompt部分
# direction乘上,变双通道
# 强制0.5
direction = np.array([1, 1])
audio = np.expand_dims(audio, 0) * direction[:, np.newaxis]
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()
audio = (hps.data.sampling_rate,(np.concatenate(audio_opt, axis=1)*32768).astype(np.int16).T)
prefix_1 = prompt_text[:8].replace(" ", "_").replace("\n", "_").replace("?","_").replace("!","_").replace(",","_")
prefix_2 = target_text[:8].replace(" ", "_").replace("\n", "_").replace("?","_").replace("!","_").replace(",","_")
filename = tempfile.mktemp(suffix=".wav",prefix=f"{prefix_1}_{prefix_2}_")
#audiosegment.from_numpy_array(audio[1].T, framerate=audio[0]).export(filename, format="WAV")
wavwrite(filename, audio[0], audio[1])
return "Success", audio, filename
return tts_fn
def get_str_list_from_phone(text, text_language):
# raw文本过g2p得到音素列表,再转成字符串
# 注意,这里的text是一个段落,可能包含多个句子
# 段落间\n分割,音素间空格分割
print(text)
texts=text.split("\n")
phone_list = []
for text in texts:
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
phone_list.append(" ".join(phones2))
return "\n".join(phone_list)
def get_phone_from_str_list(str_list:str, language:str = 'ja'):
# 从音素字符串中得到音素列表
# 注意,这里的text是一个段落,可能包含多个句子
# 段落间\n分割,音素间空格分割
sentences = str_list.split("\n")
phones = []
for sentence in sentences:
phones.append(sentence.split(" "))
return phones
splits={",","。","?","!",",",".","?","!","~",":",":","—","…",}#不考虑省略号
def split(todo_text):
todo_text = todo_text.replace("……", "。").replace("——", ",")
if (todo_text[-1] not in splits): todo_text += "。"
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while (1):
if (i_split_head >= len_text): break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if (todo_text[i_split_head] in splits):
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def change_reference_audio(prompt_text, transcripts):
return transcripts[prompt_text]
models = []
models_info = json.load(open("./models/models_info.json", "r", encoding="utf-8"))
for i, info in models_info.items():
title = info['title']
cover = info['cover']
gpt_weight = info['gpt_weight']
sovits_weight = info['sovits_weight']
example_reference = info['example_reference']
transcripts = {}
transcript_path = info["transcript_path"]
path = os.path.dirname(transcript_path)
with open(transcript_path, 'r', encoding='utf-8') as file:
for line in file:
line = line.strip().replace("\\", "/")
items = line.split("|")
wav,t = items[0], items[-1]
wav = os.path.basename(wav)
transcripts[t] = os.path.join(os.path.join(path,"reference_audio"), wav)
vq_model, ssl_model, t2s_model, hps, config, hz, max_sec = load_model(sovits_weight, gpt_weight)
models.append(
(
i,
title,
cover,
transcripts,
example_reference,
create_tts_fn(
vq_model, ssl_model, t2s_model, hps, config, hz, max_sec
)
)
)
with gr.Blocks() as app:
gr.Markdown(
"# <center> GPT-SoVITS Demo\n"
)
with gr.Tabs():
for (name, title, cover, transcripts, example_reference, tts_fn) in models:
with gr.TabItem(name):
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<a><strong>{title}</strong></a>'
'</div>')
with gr.Row():
with gr.Column():
prompt_text = gr.Dropdown(
label="Transcript of the Reference Audio",
value=example_reference if example_reference in transcripts else list(transcripts.keys())[0],
choices=list(transcripts.keys())
)
inp_ref_audio = gr.Audio(
label="Reference Audio",
type="filepath",
interactive=False,
value=transcripts[example_reference] if example_reference in transcripts else list(transcripts.values())[0]
)
transcripts_state = gr.State(value=transcripts)
prompt_text.change(
fn=change_reference_audio,
inputs=[prompt_text, transcripts_state],
outputs=[inp_ref_audio]
)
prompt_language = gr.State(value="ja")
with gr.Column():
text = gr.Textbox(label="Input Text", value="私はお兄ちゃんのだいだいだーいすきな妹なんだから、言うことなんでも聞いてくれますよね!")
text_language = gr.Dropdown(
label="Language",
choices=["ja"],
value="ja"
)
clean_button = gr.Button("Clean Text", variant="primary")
inference_button = gr.Button("Generate", variant="primary")
cleaned_text = gr.Textbox(label="Cleaned Text")
output = gr.Audio(label="Output Audio")
output_file = gr.File(label="Output Audio File")
om = gr.Textbox(label="Output Message")
clean_button.click(
fn=get_str_list_from_phone,
inputs=[text, text_language],
outputs=[cleaned_text]
)
inference_button.click(
fn=tts_fn,
inputs=[inp_ref_audio, prompt_text, prompt_language, cleaned_text, text_language, text],
outputs=[om, output, output_file]
)
app.launch(share=True) |