Spaces:
Running
Running
File size: 7,770 Bytes
e82212c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# modified from https://github.com/CjangCjengh/vits/blob/main/text/japanese.py
import re
import pyopenjtalk
import os
import hashlib
from text.symbols2 import symbols
current_file_path = os.path.dirname(__file__)
def get_hash(fp: str) -> str:
hash_md5 = hashlib.md5()
with open(fp, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
USERDIC_CSV_PATH = os.path.join(current_file_path, "ja_userdic", "userdict.csv")
USERDIC_BIN_PATH = os.path.join(current_file_path, "ja_userdic", "user.dict")
USERDIC_HASH_PATH = os.path.join(current_file_path, "ja_userdic", "userdict.md5")
# ε¦ζ沑ζη¨ζ·θ―ε
ΈοΌε°±ηζδΈδΈͺοΌε¦ζζοΌε°±ζ£ζ₯md5οΌε¦ζδΈδΈζ ·οΌε°±ιζ°ηζ
if os.path.exists(USERDIC_CSV_PATH):
print("userdict exists")
if not os.path.exists(USERDIC_BIN_PATH) or get_hash(USERDIC_CSV_PATH) != open(USERDIC_HASH_PATH, "r",encoding='utf-8').read():
pyopenjtalk.mecab_dict_index(USERDIC_CSV_PATH, USERDIC_BIN_PATH)
with open(USERDIC_HASH_PATH, "w", encoding='utf-8') as f:
f.write(get_hash(USERDIC_CSV_PATH))
if os.path.exists(USERDIC_BIN_PATH):
pyopenjtalk.update_global_jtalk_with_user_dict(USERDIC_BIN_PATH)
from text.symbols import punctuation
# Regular expression matching Japanese without punctuation marks:
_japanese_characters = re.compile(
r"[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]"
)
# Regular expression matching non-Japanese characters or punctuation marks:
_japanese_marks = re.compile(
r"[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]"
)
# List of (symbol, Japanese) pairs for marks:
_symbols_to_japanese = [(re.compile("%s" % x[0]), x[1]) for x in [("οΌ
", "γγΌγ»γ³γ")]]
# List of (consonant, sokuon) pairs:
_real_sokuon = [
(re.compile("%s" % x[0]), x[1])
for x in [
(r"Q([ββ]*[kg])", r"k#\1"),
(r"Q([ββ]*[tdjΚ§])", r"t#\1"),
(r"Q([ββ]*[sΚ])", r"s\1"),
(r"Q([ββ]*[pb])", r"p#\1"),
]
]
# List of (consonant, hatsuon) pairs:
_real_hatsuon = [
(re.compile("%s" % x[0]), x[1])
for x in [
(r"N([ββ]*[pbm])", r"m\1"),
(r"N([ββ]*[Κ§Κ₯j])", r"n^\1"),
(r"N([ββ]*[tdn])", r"n\1"),
(r"N([ββ]*[kg])", r"Ε\1"),
]
]
def post_replace_ph(ph):
rep_map = {
"οΌ": ",",
"οΌ": ",",
"οΌ": ",",
"γ": ".",
"οΌ": "!",
"οΌ": "?",
"\n": ".",
"Β·": ",",
"γ": ",",
"...": "β¦",
}
if ph in rep_map.keys():
ph = rep_map[ph]
if ph in symbols:
return ph
if ph not in symbols:
ph = "UNK"
return ph
def replace_consecutive_punctuation(text):
punctuations = ''.join(re.escape(p) for p in punctuation)
pattern = f'([{punctuations}])([{punctuations}])+'
result = re.sub(pattern, r'\1', text)
return result
def symbols_to_japanese(text):
for regex, replacement in _symbols_to_japanese:
text = re.sub(regex, replacement, text)
return text
def preprocess_jap(text, with_prosody=False):
"""Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html"""
text = symbols_to_japanese(text)
sentences = re.split(_japanese_marks, text)
marks = re.findall(_japanese_marks, text)
text = []
for i, sentence in enumerate(sentences):
if re.match(_japanese_characters, sentence):
if with_prosody:
text += pyopenjtalk_g2p_prosody(sentence)[1:-1]
else:
p = pyopenjtalk.g2p(sentence)
text += p.split(" ")
if i < len(marks):
if marks[i] == " ":# ι²ζ’ζε€ηUNK
continue
text += [marks[i].replace(" ", "")]
return text
def text_normalize(text):
# todo: jap text normalize
# ιΏε
ιε€ζ ηΉεΌθ΅·ηεθζ³ι²
text = replace_consecutive_punctuation(text)
text = "".join([i.lower() for i in text])
return text
# Copied from espnet https://github.com/espnet/espnet/blob/master/espnet2/text/phoneme_tokenizer.py
def pyopenjtalk_g2p_prosody(text, drop_unvoiced_vowels=True):
"""Extract phoneme + prosoody symbol sequence from input full-context labels.
The algorithm is based on `Prosodic features control by symbols as input of
sequence-to-sequence acoustic modeling for neural TTS`_ with some r9y9's tweaks.
Args:
text (str): Input text.
drop_unvoiced_vowels (bool): whether to drop unvoiced vowels.
Returns:
List[str]: List of phoneme + prosody symbols.
Examples:
>>> from espnet2.text.phoneme_tokenizer import pyopenjtalk_g2p_prosody
>>> pyopenjtalk_g2p_prosody("γγγ«γ‘γ―γ")
['^', 'k', 'o', '[', 'N', 'n', 'i', 'ch', 'i', 'w', 'a', '$']
.. _`Prosodic features control by symbols as input of sequence-to-sequence acoustic
modeling for neural TTS`: https://doi.org/10.1587/transinf.2020EDP7104
"""
labels = pyopenjtalk.make_label(pyopenjtalk.run_frontend(text))
N = len(labels)
phones = []
for n in range(N):
lab_curr = labels[n]
# current phoneme
p3 = re.search(r"\-(.*?)\+", lab_curr).group(1)
# deal unvoiced vowels as normal vowels
if drop_unvoiced_vowels and p3 in "AEIOU":
p3 = p3.lower()
# deal with sil at the beginning and the end of text
if p3 == "sil":
assert n == 0 or n == N - 1
if n == 0:
phones.append("^")
elif n == N - 1:
# check question form or not
e3 = _numeric_feature_by_regex(r"!(\d+)_", lab_curr)
if e3 == 0:
phones.append("$")
elif e3 == 1:
phones.append("?")
continue
elif p3 == "pau":
phones.append("_")
continue
else:
phones.append(p3)
# accent type and position info (forward or backward)
a1 = _numeric_feature_by_regex(r"/A:([0-9\-]+)\+", lab_curr)
a2 = _numeric_feature_by_regex(r"\+(\d+)\+", lab_curr)
a3 = _numeric_feature_by_regex(r"\+(\d+)/", lab_curr)
# number of mora in accent phrase
f1 = _numeric_feature_by_regex(r"/F:(\d+)_", lab_curr)
a2_next = _numeric_feature_by_regex(r"\+(\d+)\+", labels[n + 1])
# accent phrase border
if a3 == 1 and a2_next == 1 and p3 in "aeiouAEIOUNcl":
phones.append("#")
# pitch falling
elif a1 == 0 and a2_next == a2 + 1 and a2 != f1:
phones.append("]")
# pitch rising
elif a2 == 1 and a2_next == 2:
phones.append("[")
return phones
# Copied from espnet https://github.com/espnet/espnet/blob/master/espnet2/text/phoneme_tokenizer.py
def _numeric_feature_by_regex(regex, s):
match = re.search(regex, s)
if match is None:
return -50
return int(match.group(1))
def g2p(norm_text, with_prosody=True):
norm_text = text_normalize(norm_text)
phones = preprocess_jap(norm_text, with_prosody)
phones = [post_replace_ph(i) for i in phones]
# todo: implement tones and word2ph
return phones
if __name__ == "__main__":
phones = g2p("γγγ«γ‘γ―, hello, AKITOγ§γ,γγγγγι‘γγγΎγγοΌ")
print(phones)
|