Spaces:
Running
Running
File size: 9,527 Bytes
e82212c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# This code is modified from https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/g2pw
# This code is modified from https://github.com/GitYCC/g2pW
import json
import os
import zipfile,requests
from typing import Any
from typing import Dict
from typing import List
from typing import Tuple
import numpy as np
import onnxruntime
from opencc import OpenCC
from transformers import AutoTokenizer
from pypinyin import pinyin
from pypinyin import Style
from .dataset import get_char_phoneme_labels
from .dataset import get_phoneme_labels
from .dataset import prepare_onnx_input
from .utils import load_config
from ..zh_normalization.char_convert import tranditional_to_simplified
model_version = '1.1'
def predict(session, onnx_input: Dict[str, Any],
labels: List[str]) -> Tuple[List[str], List[float]]:
all_preds = []
all_confidences = []
probs = session.run([], {
"input_ids": onnx_input['input_ids'],
"token_type_ids": onnx_input['token_type_ids'],
"attention_mask": onnx_input['attention_masks'],
"phoneme_mask": onnx_input['phoneme_masks'],
"char_ids": onnx_input['char_ids'],
"position_ids": onnx_input['position_ids']
})[0]
preds = np.argmax(probs, axis=1).tolist()
max_probs = []
for index, arr in zip(preds, probs.tolist()):
max_probs.append(arr[index])
all_preds += [labels[pred] for pred in preds]
all_confidences += max_probs
return all_preds, all_confidences
def download_and_decompress(model_dir: str='G2PWModel/'):
if not os.path.exists(model_dir):
parent_directory = os.path.dirname(model_dir)
zip_dir = os.path.join(parent_directory,"G2PWModel_1.1.zip")
extract_dir = os.path.join(parent_directory,"G2PWModel_1.1")
extract_dir_new = os.path.join(parent_directory,"G2PWModel")
print("Downloading g2pw model...")
modelscope_url = "https://paddlespeech.bj.bcebos.com/Parakeet/released_models/g2p/G2PWModel_1.1.zip"
with requests.get(modelscope_url, stream=True) as r:
r.raise_for_status()
with open(zip_dir, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
print("Extracting g2pw model...")
with zipfile.ZipFile(zip_dir, "r") as zip_ref:
zip_ref.extractall(parent_directory)
os.rename(extract_dir, extract_dir_new)
return model_dir
class G2PWOnnxConverter:
def __init__(self,
model_dir: str='G2PWModel/',
style: str='bopomofo',
model_source: str=None,
enable_non_tradional_chinese: bool=False):
uncompress_path = download_and_decompress(model_dir)
sess_options = onnxruntime.SessionOptions()
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
sess_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
sess_options.intra_op_num_threads = 2
self.session_g2pW = onnxruntime.InferenceSession(
os.path.join(uncompress_path, 'g2pW.onnx'),
sess_options=sess_options, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
# sess_options=sess_options)
self.config = load_config(
config_path=os.path.join(uncompress_path, 'config.py'),
use_default=True)
self.model_source = model_source if model_source else self.config.model_source
self.enable_opencc = enable_non_tradional_chinese
self.tokenizer = AutoTokenizer.from_pretrained(self.model_source)
polyphonic_chars_path = os.path.join(uncompress_path,
'POLYPHONIC_CHARS.txt')
monophonic_chars_path = os.path.join(uncompress_path,
'MONOPHONIC_CHARS.txt')
self.polyphonic_chars = [
line.split('\t')
for line in open(polyphonic_chars_path, encoding='utf-8').read()
.strip().split('\n')
]
self.non_polyphonic = {
'一', '不', '和', '咋', '嗲', '剖', '差', '攢', '倒', '難', '奔', '勁', '拗',
'肖', '瘙', '誒', '泊', '听', '噢'
}
self.non_monophonic = {'似', '攢'}
self.monophonic_chars = [
line.split('\t')
for line in open(monophonic_chars_path, encoding='utf-8').read()
.strip().split('\n')
]
self.labels, self.char2phonemes = get_char_phoneme_labels(
polyphonic_chars=self.polyphonic_chars
) if self.config.use_char_phoneme else get_phoneme_labels(
polyphonic_chars=self.polyphonic_chars)
self.chars = sorted(list(self.char2phonemes.keys()))
self.polyphonic_chars_new = set(self.chars)
for char in self.non_polyphonic:
if char in self.polyphonic_chars_new:
self.polyphonic_chars_new.remove(char)
self.monophonic_chars_dict = {
char: phoneme
for char, phoneme in self.monophonic_chars
}
for char in self.non_monophonic:
if char in self.monophonic_chars_dict:
self.monophonic_chars_dict.pop(char)
self.pos_tags = [
'UNK', 'A', 'C', 'D', 'I', 'N', 'P', 'T', 'V', 'DE', 'SHI'
]
with open(
os.path.join(uncompress_path,
'bopomofo_to_pinyin_wo_tune_dict.json'),
'r',
encoding='utf-8') as fr:
self.bopomofo_convert_dict = json.load(fr)
self.style_convert_func = {
'bopomofo': lambda x: x,
'pinyin': self._convert_bopomofo_to_pinyin,
}[style]
with open(
os.path.join(uncompress_path, 'char_bopomofo_dict.json'),
'r',
encoding='utf-8') as fr:
self.char_bopomofo_dict = json.load(fr)
if self.enable_opencc:
self.cc = OpenCC('s2tw')
def _convert_bopomofo_to_pinyin(self, bopomofo: str) -> str:
tone = bopomofo[-1]
assert tone in '12345'
component = self.bopomofo_convert_dict.get(bopomofo[:-1])
if component:
return component + tone
else:
print(f'Warning: "{bopomofo}" cannot convert to pinyin')
return None
def __call__(self, sentences: List[str]) -> List[List[str]]:
if isinstance(sentences, str):
sentences = [sentences]
if self.enable_opencc:
translated_sentences = []
for sent in sentences:
translated_sent = self.cc.convert(sent)
assert len(translated_sent) == len(sent)
translated_sentences.append(translated_sent)
sentences = translated_sentences
texts, query_ids, sent_ids, partial_results = self._prepare_data(
sentences=sentences)
if len(texts) == 0:
# sentences no polyphonic words
return partial_results
onnx_input = prepare_onnx_input(
tokenizer=self.tokenizer,
labels=self.labels,
char2phonemes=self.char2phonemes,
chars=self.chars,
texts=texts,
query_ids=query_ids,
use_mask=self.config.use_mask,
window_size=None)
preds, confidences = predict(
session=self.session_g2pW,
onnx_input=onnx_input,
labels=self.labels)
if self.config.use_char_phoneme:
preds = [pred.split(' ')[1] for pred in preds]
results = partial_results
for sent_id, query_id, pred in zip(sent_ids, query_ids, preds):
results[sent_id][query_id] = self.style_convert_func(pred)
return results
def _prepare_data(
self, sentences: List[str]
) -> Tuple[List[str], List[int], List[int], List[List[str]]]:
texts, query_ids, sent_ids, partial_results = [], [], [], []
for sent_id, sent in enumerate(sentences):
# pypinyin works well for Simplified Chinese than Traditional Chinese
sent_s = tranditional_to_simplified(sent)
pypinyin_result = pinyin(
sent_s, neutral_tone_with_five=True, style=Style.TONE3)
partial_result = [None] * len(sent)
for i, char in enumerate(sent):
if char in self.polyphonic_chars_new:
texts.append(sent)
query_ids.append(i)
sent_ids.append(sent_id)
elif char in self.monophonic_chars_dict:
partial_result[i] = self.style_convert_func(
self.monophonic_chars_dict[char])
elif char in self.char_bopomofo_dict:
partial_result[i] = pypinyin_result[i][0]
# partial_result[i] = self.style_convert_func(self.char_bopomofo_dict[char][0])
else:
partial_result[i] = pypinyin_result[i][0]
partial_results.append(partial_result)
return texts, query_ids, sent_ids, partial_results
|