Spaces:
Running
Running
File size: 10,339 Bytes
e82212c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import pickle
import os
import re
import wordsegment
from g2p_en import G2p
from text.symbols import punctuation
from text import symbols
import unicodedata
from builtins import str as unicode
from g2p_en.expand import normalize_numbers
from nltk.tokenize import TweetTokenizer
word_tokenize = TweetTokenizer().tokenize
from nltk import pos_tag
current_file_path = os.path.dirname(__file__)
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
CMU_DICT_FAST_PATH = os.path.join(current_file_path, "cmudict-fast.rep")
CMU_DICT_HOT_PATH = os.path.join(current_file_path, "engdict-hot.rep")
CACHE_PATH = os.path.join(current_file_path, "engdict_cache.pickle")
NAMECACHE_PATH = os.path.join(current_file_path, "namedict_cache.pickle")
arpa = {
"AH0",
"S",
"AH1",
"EY2",
"AE2",
"EH0",
"OW2",
"UH0",
"NG",
"B",
"G",
"AY0",
"M",
"AA0",
"F",
"AO0",
"ER2",
"UH1",
"IY1",
"AH2",
"DH",
"IY0",
"EY1",
"IH0",
"K",
"N",
"W",
"IY2",
"T",
"AA1",
"ER1",
"EH2",
"OY0",
"UH2",
"UW1",
"Z",
"AW2",
"AW1",
"V",
"UW2",
"AA2",
"ER",
"AW0",
"UW0",
"R",
"OW1",
"EH1",
"ZH",
"AE0",
"IH2",
"IH",
"Y",
"JH",
"P",
"AY1",
"EY0",
"OY2",
"TH",
"HH",
"D",
"ER0",
"CH",
"AO1",
"AE1",
"AO2",
"OY1",
"AY2",
"IH1",
"OW0",
"L",
"SH",
}
def replace_phs(phs):
rep_map = {"'": "-"}
phs_new = []
for ph in phs:
if ph in symbols:
phs_new.append(ph)
elif ph in rep_map.keys():
phs_new.append(rep_map[ph])
else:
print("ph not in symbols: ", ph)
return phs_new
def replace_consecutive_punctuation(text):
punctuations = ''.join(re.escape(p) for p in punctuation)
pattern = f'([{punctuations}])([{punctuations}])+'
result = re.sub(pattern, r'\1', text)
return result
def read_dict():
g2p_dict = {}
start_line = 49
with open(CMU_DICT_PATH) as f:
line = f.readline()
line_index = 1
while line:
if line_index >= start_line:
line = line.strip()
word_split = line.split(" ")
word = word_split[0].lower()
syllable_split = word_split[1].split(" - ")
g2p_dict[word] = []
for syllable in syllable_split:
phone_split = syllable.split(" ")
g2p_dict[word].append(phone_split)
line_index = line_index + 1
line = f.readline()
return g2p_dict
def read_dict_new():
g2p_dict = {}
with open(CMU_DICT_PATH) as f:
line = f.readline()
line_index = 1
while line:
if line_index >= 57:
line = line.strip()
word_split = line.split(" ")
word = word_split[0].lower()
g2p_dict[word] = [word_split[1].split(" ")]
line_index = line_index + 1
line = f.readline()
with open(CMU_DICT_FAST_PATH) as f:
line = f.readline()
line_index = 1
while line:
if line_index >= 0:
line = line.strip()
word_split = line.split(" ")
word = word_split[0].lower()
if word not in g2p_dict:
g2p_dict[word] = [word_split[1:]]
line_index = line_index + 1
line = f.readline()
return g2p_dict
def hot_reload_hot(g2p_dict):
with open(CMU_DICT_HOT_PATH) as f:
line = f.readline()
line_index = 1
while line:
if line_index >= 0:
line = line.strip()
word_split = line.split(" ")
word = word_split[0].lower()
# 自定义发音词直接覆盖字典
g2p_dict[word] = [word_split[1:]]
line_index = line_index + 1
line = f.readline()
return g2p_dict
def cache_dict(g2p_dict, file_path):
with open(file_path, "wb") as pickle_file:
pickle.dump(g2p_dict, pickle_file)
def get_dict():
if os.path.exists(CACHE_PATH):
with open(CACHE_PATH, "rb") as pickle_file:
g2p_dict = pickle.load(pickle_file)
else:
g2p_dict = read_dict_new()
cache_dict(g2p_dict, CACHE_PATH)
g2p_dict = hot_reload_hot(g2p_dict)
return g2p_dict
def get_namedict():
if os.path.exists(NAMECACHE_PATH):
with open(NAMECACHE_PATH, "rb") as pickle_file:
name_dict = pickle.load(pickle_file)
else:
name_dict = {}
return name_dict
def text_normalize(text):
# todo: eng text normalize
# 适配中文及 g2p_en 标点
rep_map = {
"[;::,;]": ",",
'["’]': "'",
"。": ".",
"!": "!",
"?": "?",
}
for p, r in rep_map.items():
text = re.sub(p, r, text)
# 来自 g2p_en 文本格式化处理
# 增加大写兼容
text = unicode(text)
text = normalize_numbers(text)
text = ''.join(char for char in unicodedata.normalize('NFD', text)
if unicodedata.category(char) != 'Mn') # Strip accents
text = re.sub("[^ A-Za-z'.,?!\-]", "", text)
text = re.sub(r"(?i)i\.e\.", "that is", text)
text = re.sub(r"(?i)e\.g\.", "for example", text)
# 避免重复标点引起的参考泄露
text = replace_consecutive_punctuation(text)
return text
class en_G2p(G2p):
def __init__(self):
super().__init__()
# 分词初始化
wordsegment.load()
# 扩展过时字典, 添加姓名字典
self.cmu = get_dict()
self.namedict = get_namedict()
# 剔除读音错误的几个缩写
for word in ["AE", "AI", "AR", "IOS", "HUD", "OS"]:
del self.cmu[word.lower()]
# 修正多音字
self.homograph2features["read"] = (['R', 'IY1', 'D'], ['R', 'EH1', 'D'], 'VBP')
self.homograph2features["complex"] = (['K', 'AH0', 'M', 'P', 'L', 'EH1', 'K', 'S'], ['K', 'AA1', 'M', 'P', 'L', 'EH0', 'K', 'S'], 'JJ')
def __call__(self, text):
# tokenization
words = word_tokenize(text)
tokens = pos_tag(words) # tuples of (word, tag)
# steps
prons = []
for o_word, pos in tokens:
# 还原 g2p_en 小写操作逻辑
word = o_word.lower()
if re.search("[a-z]", word) is None:
pron = [word]
# 先把单字母推出去
elif len(word) == 1:
# 单读 A 发音修正, 这里需要原格式 o_word 判断大写
if o_word == "A":
pron = ['EY1']
else:
pron = self.cmu[word][0]
# g2p_en 原版多音字处理
elif word in self.homograph2features: # Check homograph
pron1, pron2, pos1 = self.homograph2features[word]
if pos.startswith(pos1):
pron = pron1
# pos1比pos长仅出现在read
elif len(pos) < len(pos1) and pos == pos1[:len(pos)]:
pron = pron1
else:
pron = pron2
else:
# 递归查找预测
pron = self.qryword(o_word)
prons.extend(pron)
prons.extend([" "])
return prons[:-1]
def qryword(self, o_word):
word = o_word.lower()
# 查字典, 单字母除外
if len(word) > 1 and word in self.cmu: # lookup CMU dict
return self.cmu[word][0]
# 单词仅首字母大写时查找姓名字典
if o_word.istitle() and word in self.namedict:
return self.namedict[word][0]
# oov 长度小于等于 3 直接读字母
if len(word) <= 3:
phones = []
for w in word:
# 单读 A 发音修正, 此处不存在大写的情况
if w == "a":
phones.extend(['EY1'])
else:
phones.extend(self.cmu[w][0])
return phones
# 尝试分离所有格
if re.match(r"^([a-z]+)('s)$", word):
phones = self.qryword(word[:-2])[:]
# P T K F TH HH 无声辅音结尾 's 发 ['S']
if phones[-1] in ['P', 'T', 'K', 'F', 'TH', 'HH']:
phones.extend(['S'])
# S Z SH ZH CH JH 擦声结尾 's 发 ['IH1', 'Z'] 或 ['AH0', 'Z']
elif phones[-1] in ['S', 'Z', 'SH', 'ZH', 'CH', 'JH']:
phones.extend(['AH0', 'Z'])
# B D G DH V M N NG L R W Y 有声辅音结尾 's 发 ['Z']
# AH0 AH1 AH2 EY0 EY1 EY2 AE0 AE1 AE2 EH0 EH1 EH2 OW0 OW1 OW2 UH0 UH1 UH2 IY0 IY1 IY2 AA0 AA1 AA2 AO0 AO1 AO2
# ER ER0 ER1 ER2 UW0 UW1 UW2 AY0 AY1 AY2 AW0 AW1 AW2 OY0 OY1 OY2 IH IH0 IH1 IH2 元音结尾 's 发 ['Z']
else:
phones.extend(['Z'])
return phones
# 尝试进行分词,应对复合词
comps = wordsegment.segment(word.lower())
# 无法分词的送回去预测
if len(comps)==1:
return self.predict(word)
# 可以分词的递归处理
return [phone for comp in comps for phone in self.qryword(comp)]
_g2p = en_G2p()
def g2p(text):
# g2p_en 整段推理,剔除不存在的arpa返回
phone_list = _g2p(text)
phones = [ph if ph != "<unk>" else "UNK" for ph in phone_list if ph not in [" ", "<pad>", "UW", "</s>", "<s>"]]
return replace_phs(phones)
if __name__ == "__main__":
print(g2p("hello"))
print(g2p(text_normalize("e.g. I used openai's AI tool to draw a picture.")))
print(g2p(text_normalize("In this; paper, we propose 1 DSPGAN, a GAN-based universal vocoder.")))
|