File size: 15,432 Bytes
705bb25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import os,sys
parent_directory = os.path.dirname(os.path.abspath(__file__))
import logging,pdb
logger = logging.getLogger(__name__)

import librosa
import numpy as np
import soundfile as sf
import torch
from lib.lib_v5 import nets_61968KB as Nets
from lib.lib_v5 import spec_utils
from lib.lib_v5.model_param_init import ModelParameters
from lib.lib_v5.nets_new import CascadedNet
from lib.utils import inference


class AudioPre:
    def __init__(self, agg, model_path, device, is_half, tta=False):
        self.model_path = model_path
        self.device = device
        self.data = {
            # Processing Options
            "postprocess": False,
            "tta": tta,
            # Constants
            "window_size": 512,
            "agg": agg,
            "high_end_process": "mirroring",
        }
        mp = ModelParameters("%s/lib/lib_v5/modelparams/4band_v2.json"%parent_directory)
        model = Nets.CascadedASPPNet(mp.param["bins"] * 2)
        cpk = torch.load(model_path, map_location="cpu")
        model.load_state_dict(cpk)
        model.eval()
        if is_half:
            model = model.half().to(device)
        else:
            model = model.to(device)

        self.mp = mp
        self.model = model

    def _path_audio_(

        self, music_file, ins_root=None, vocal_root=None, format="flac", is_hp3=False

    ):
        if ins_root is None and vocal_root is None:
            return "No save root."
        name = os.path.basename(music_file)
        if ins_root is not None:
            os.makedirs(ins_root, exist_ok=True)
        if vocal_root is not None:
            os.makedirs(vocal_root, exist_ok=True)
        X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
        bands_n = len(self.mp.param["band"])
        # print(bands_n)
        for d in range(bands_n, 0, -1):
            bp = self.mp.param["band"][d]
            if d == bands_n:  # high-end band
                (
                    X_wave[d],
                    _,
                ) = librosa.core.load(  # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
                    music_file,
                    sr       = bp["sr"],
                    mono     = False,
                    dtype    = np.float32,
                    res_type = bp["res_type"],
                )
                if X_wave[d].ndim == 1:
                    X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
            else:  # lower bands
                X_wave[d] = librosa.core.resample(
                    X_wave[d + 1],
                    orig_sr   = self.mp.param["band"][d + 1]["sr"],
                    target_sr = bp["sr"],
                    res_type  = bp["res_type"],
                )
            # Stft of wave source
            X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
                X_wave[d],
                bp["hl"],
                bp["n_fft"],
                self.mp.param["mid_side"],
                self.mp.param["mid_side_b2"],
                self.mp.param["reverse"],
            )
            # pdb.set_trace()
            if d == bands_n and self.data["high_end_process"] != "none":
                input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
                    self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
                )
                input_high_end = X_spec_s[d][
                    :, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
                ]

        X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
        aggresive_set = float(self.data["agg"] / 100)
        aggressiveness = {
            "value": aggresive_set,
            "split_bin": self.mp.param["band"][1]["crop_stop"],
        }
        with torch.no_grad():
            pred, X_mag, X_phase = inference(
                X_spec_m, self.device, self.model, aggressiveness, self.data
            )
        # Postprocess
        if self.data["postprocess"]:
            pred_inv = np.clip(X_mag - pred, 0, np.inf)
            pred = spec_utils.mask_silence(pred, pred_inv)
        y_spec_m = pred * X_phase
        v_spec_m = X_spec_m - y_spec_m

        if is_hp3 == True:
            ins_root,vocal_root = vocal_root,ins_root

        if ins_root is not None:
            if self.data["high_end_process"].startswith("mirroring"):
                input_high_end_ = spec_utils.mirroring(
                    self.data["high_end_process"], y_spec_m, input_high_end, self.mp
                )
                wav_instrument = spec_utils.cmb_spectrogram_to_wave(
                    y_spec_m, self.mp, input_high_end_h, input_high_end_
                )
            else:
                wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
            logger.info("%s instruments done" % name)
            if is_hp3 == True:
                head = "vocal_"
            else:
                head = "instrument_"
            if format in ["wav", "flac"]:
                sf.write(
                    os.path.join(
                        ins_root,
                        head + "{}_{}.{}".format(name, self.data["agg"], format),
                    ),
                    (np.array(wav_instrument) * 32768).astype("int16"),
                    self.mp.param["sr"],
                )  #
            else:
                path = os.path.join(
                    ins_root, head + "{}_{}.wav".format(name, self.data["agg"])
                )
                sf.write(
                    path,
                    (np.array(wav_instrument) * 32768).astype("int16"),
                    self.mp.param["sr"],
                )
                if os.path.exists(path):
                    opt_format_path = path[:-4] + ".%s" % format
                    os.system("ffmpeg -i %s -vn %s -q:a 2 -y" % (path, opt_format_path))
                    if os.path.exists(opt_format_path):
                        try:
                            os.remove(path)
                        except:
                            pass
        if vocal_root is not None:
            if is_hp3 == True:
                head = "instrument_"
            else:
                head = "vocal_"
            if self.data["high_end_process"].startswith("mirroring"):
                input_high_end_ = spec_utils.mirroring(
                    self.data["high_end_process"], v_spec_m, input_high_end, self.mp
                )
                wav_vocals = spec_utils.cmb_spectrogram_to_wave(
                    v_spec_m, self.mp, input_high_end_h, input_high_end_
                )
            else:
                wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
            logger.info("%s vocals done" % name)
            if format in ["wav", "flac"]:
                sf.write(
                    os.path.join(
                        vocal_root,
                        head + "{}_{}.{}".format(name, self.data["agg"], format),
                    ),
                    (np.array(wav_vocals) * 32768).astype("int16"),
                    self.mp.param["sr"],
                )
            else:
                path = os.path.join(
                    vocal_root, head + "{}_{}.wav".format(name, self.data["agg"])
                )
                sf.write(
                    path,
                    (np.array(wav_vocals) * 32768).astype("int16"),
                    self.mp.param["sr"],
                )
                if os.path.exists(path):
                    opt_format_path = path[:-4] + ".%s" % format
                    os.system("ffmpeg -i %s -vn %s -q:a 2 -y" % (path, opt_format_path))
                    if os.path.exists(opt_format_path):
                        try:
                            os.remove(path)
                        except:
                            pass


class AudioPreDeEcho:
    def __init__(self, agg, model_path, device, is_half, tta=False):
        self.model_path = model_path
        self.device = device
        self.data = {
            # Processing Options
            "postprocess": False,
            "tta": tta,
            # Constants
            "window_size": 512,
            "agg": agg,
            "high_end_process": "mirroring",
        }
        mp = ModelParameters("%s/lib/lib_v5/modelparams/4band_v3.json"%parent_directory)
        nout = 64 if "DeReverb" in model_path else 48
        model = CascadedNet(mp.param["bins"] * 2, nout)
        cpk = torch.load(model_path, map_location="cpu")
        model.load_state_dict(cpk)
        model.eval()
        if is_half:
            model = model.half().to(device)
        else:
            model = model.to(device)

        self.mp = mp
        self.model = model

    def _path_audio_(

        self, music_file, vocal_root=None, ins_root=None, format="flac", is_hp3=False

    ):  # 3个VR模型vocal和ins是反的
        if ins_root is None and vocal_root is None:
            return "No save root."
        name = os.path.basename(music_file)
        if ins_root is not None:
            os.makedirs(ins_root, exist_ok=True)
        if vocal_root is not None:
            os.makedirs(vocal_root, exist_ok=True)
        X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
        bands_n = len(self.mp.param["band"])
        # print(bands_n)
        for d in range(bands_n, 0, -1):
            bp = self.mp.param["band"][d]
            if d == bands_n:  # high-end band
                (
                    X_wave[d],
                    _,
                ) = librosa.core.load(  # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
                    music_file,
                    sr       = bp["sr"],
                    mono     = False,
                    dtype    = np.float32,
                    res_type = bp["res_type"],
                )
                if X_wave[d].ndim == 1:
                    X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
            else:  # lower bands
                X_wave[d] = librosa.core.resample(
                    X_wave[d + 1],
                    orig_sr   = self.mp.param["band"][d + 1]["sr"],
                    target_sr = bp["sr"],
                    res_type  = bp["res_type"],
                )
            # Stft of wave source
            X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
                X_wave[d],
                bp["hl"],
                bp["n_fft"],
                self.mp.param["mid_side"],
                self.mp.param["mid_side_b2"],
                self.mp.param["reverse"],
            )
            # pdb.set_trace()
            if d == bands_n and self.data["high_end_process"] != "none":
                input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
                    self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
                )
                input_high_end = X_spec_s[d][
                    :, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
                ]

        X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
        aggresive_set = float(self.data["agg"] / 100)
        aggressiveness = {
            "value": aggresive_set,
            "split_bin": self.mp.param["band"][1]["crop_stop"],
        }
        with torch.no_grad():
            pred, X_mag, X_phase = inference(
                X_spec_m, self.device, self.model, aggressiveness, self.data
            )
        # Postprocess
        if self.data["postprocess"]:
            pred_inv = np.clip(X_mag - pred, 0, np.inf)
            pred = spec_utils.mask_silence(pred, pred_inv)
        y_spec_m = pred * X_phase
        v_spec_m = X_spec_m - y_spec_m

        if ins_root is not None:
            if self.data["high_end_process"].startswith("mirroring"):
                input_high_end_ = spec_utils.mirroring(
                    self.data["high_end_process"], y_spec_m, input_high_end, self.mp
                )
                wav_instrument = spec_utils.cmb_spectrogram_to_wave(
                    y_spec_m, self.mp, input_high_end_h, input_high_end_
                )
            else:
                wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
            logger.info("%s instruments done" % name)
            if format in ["wav", "flac"]:
                sf.write(
                    os.path.join(
                        ins_root,
                        "vocal_{}_{}.{}".format(name, self.data["agg"], format),
                    ),
                    (np.array(wav_instrument) * 32768).astype("int16"),
                    self.mp.param["sr"],
                )  #
            else:
                path = os.path.join(
                    ins_root, "vocal_{}_{}.wav".format(name, self.data["agg"])
                )
                sf.write(
                    path,
                    (np.array(wav_instrument) * 32768).astype("int16"),
                    self.mp.param["sr"],
                )
                if os.path.exists(path):
                    opt_format_path = path[:-4] + ".%s" % format
                    os.system("ffmpeg -i %s -vn %s -q:a 2 -y" % (path, opt_format_path))
                    if os.path.exists(opt_format_path):
                        try:
                            os.remove(path)
                        except:
                            pass
        if vocal_root is not None:
            if self.data["high_end_process"].startswith("mirroring"):
                input_high_end_ = spec_utils.mirroring(
                    self.data["high_end_process"], v_spec_m, input_high_end, self.mp
                )
                wav_vocals = spec_utils.cmb_spectrogram_to_wave(
                    v_spec_m, self.mp, input_high_end_h, input_high_end_
                )
            else:
                wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
            logger.info("%s vocals done" % name)
            if format in ["wav", "flac"]:
                sf.write(
                    os.path.join(
                        vocal_root,
                        "instrument_{}_{}.{}".format(name, self.data["agg"], format),
                    ),
                    (np.array(wav_vocals) * 32768).astype("int16"),
                    self.mp.param["sr"],
                )
            else:
                path = os.path.join(
                    vocal_root, "instrument_{}_{}.wav".format(name, self.data["agg"])
                )
                sf.write(
                    path,
                    (np.array(wav_vocals) * 32768).astype("int16"),
                    self.mp.param["sr"],
                )
                if os.path.exists(path):
                    opt_format_path = path[:-4] + ".%s" % format
                    os.system("ffmpeg -i %s -vn %s -q:a 2 -y" % (path, opt_format_path))
                    if os.path.exists(opt_format_path):
                        try:
                            os.remove(path)
                        except:
                            pass