File size: 17,914 Bytes
721e031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
# This script is modified from https://github.com/DeepMotionEditing/deep-motion-editing
# Licensed under:
"""

Copyright (c) 2020, Kfir Aberman, Peizhuo Li, Yijia Weng, Dani Lischinski, Olga Sorkine-Hornung, Daniel Cohen-Or and Baoquan Chen.

All rights reserved.



Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:



* Redistributions of source code must retain the above copyright notice, this

  list of conditions and the following disclaimer.



* Redistributions in binary form must reproduce the above copyright notice,

  this list of conditions and the following disclaimer in the documentation

  and/or other materials provided with the distribution.



THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

"""

import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F


class SkeletonConv(nn.Module):
    def __init__(

        self,

        neighbour_list,

        in_channels,

        out_channels,

        kernel_size,

        joint_num,

        stride=1,

        padding=0,

        bias=True,

        padding_mode="zeros",

        add_offset=False,

        in_offset_channel=0,

    ):
        self.in_channels_per_joint = in_channels // joint_num
        self.out_channels_per_joint = out_channels // joint_num
        if in_channels % joint_num != 0 or out_channels % joint_num != 0:
            raise Exception("BAD")
        super(SkeletonConv, self).__init__()

        if padding_mode == "zeros":
            padding_mode = "constant"
        if padding_mode == "reflection":
            padding_mode = "reflect"

        self.expanded_neighbour_list = []
        self.expanded_neighbour_list_offset = []
        self.neighbour_list = neighbour_list
        self.add_offset = add_offset
        self.joint_num = joint_num

        self.stride = stride
        self.dilation = 1
        self.groups = 1
        self.padding = padding
        self.padding_mode = padding_mode
        self._padding_repeated_twice = (padding, padding)

        for neighbour in neighbour_list:
            expanded = []
            for k in neighbour:
                for i in range(self.in_channels_per_joint):
                    expanded.append(k * self.in_channels_per_joint + i)
            self.expanded_neighbour_list.append(expanded)

        if self.add_offset:
            self.offset_enc = SkeletonLinear(neighbour_list, in_offset_channel * len(neighbour_list), out_channels)

            for neighbour in neighbour_list:
                expanded = []
                for k in neighbour:
                    for i in range(add_offset):
                        expanded.append(k * in_offset_channel + i)
                self.expanded_neighbour_list_offset.append(expanded)

        self.weight = torch.zeros(out_channels, in_channels, kernel_size)
        if bias:
            self.bias = torch.zeros(out_channels)
        else:
            self.register_parameter("bias", None)

        self.mask = torch.zeros_like(self.weight)
        for i, neighbour in enumerate(self.expanded_neighbour_list):
            self.mask[self.out_channels_per_joint * i : self.out_channels_per_joint * (i + 1), neighbour, ...] = 1
        self.mask = nn.Parameter(self.mask, requires_grad=False)

        self.description = (
            "SkeletonConv(in_channels_per_armature={}, out_channels_per_armature={}, kernel_size={}, "
            "joint_num={}, stride={}, padding={}, bias={})".format(
                in_channels // joint_num, out_channels // joint_num, kernel_size, joint_num, stride, padding, bias
            )
        )

        self.reset_parameters()

    def reset_parameters(self):
        for i, neighbour in enumerate(self.expanded_neighbour_list):
            """ Use temporary variable to avoid assign to copy of slice, which might lead to unexpected result """
            tmp = torch.zeros_like(self.weight[self.out_channels_per_joint * i : self.out_channels_per_joint * (i + 1), neighbour, ...])
            nn.init.kaiming_uniform_(tmp, a=math.sqrt(5))
            self.weight[self.out_channels_per_joint * i : self.out_channels_per_joint * (i + 1), neighbour, ...] = tmp
            if self.bias is not None:
                fan_in, _ = nn.init._calculate_fan_in_and_fan_out(
                    self.weight[self.out_channels_per_joint * i : self.out_channels_per_joint * (i + 1), neighbour, ...]
                )
                bound = 1 / math.sqrt(fan_in)
                tmp = torch.zeros_like(self.bias[self.out_channels_per_joint * i : self.out_channels_per_joint * (i + 1)])
                nn.init.uniform_(tmp, -bound, bound)
                self.bias[self.out_channels_per_joint * i : self.out_channels_per_joint * (i + 1)] = tmp

        self.weight = nn.Parameter(self.weight)
        if self.bias is not None:
            self.bias = nn.Parameter(self.bias)

    def set_offset(self, offset):
        if not self.add_offset:
            raise Exception("Wrong Combination of Parameters")
        self.offset = offset.reshape(offset.shape[0], -1)

    def forward(self, input):
        # print('SkeletonConv')
        weight_masked = self.weight * self.mask
        # print(f'input: {input.size()}')
        res = F.conv1d(
            F.pad(input, self._padding_repeated_twice, mode=self.padding_mode),
            weight_masked,
            self.bias,
            self.stride,
            0,
            self.dilation,
            self.groups,
        )

        if self.add_offset:
            offset_res = self.offset_enc(self.offset)
            offset_res = offset_res.reshape(offset_res.shape + (1,))
            res += offset_res / 100
        # print(f'res: {res.size()}')
        return res


class SkeletonLinear(nn.Module):
    def __init__(self, neighbour_list, in_channels, out_channels, extra_dim1=False):
        super(SkeletonLinear, self).__init__()
        self.neighbour_list = neighbour_list
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.in_channels_per_joint = in_channels // len(neighbour_list)
        self.out_channels_per_joint = out_channels // len(neighbour_list)
        self.extra_dim1 = extra_dim1
        self.expanded_neighbour_list = []

        for neighbour in neighbour_list:
            expanded = []
            for k in neighbour:
                for i in range(self.in_channels_per_joint):
                    expanded.append(k * self.in_channels_per_joint + i)
            self.expanded_neighbour_list.append(expanded)

        self.weight = torch.zeros(out_channels, in_channels)
        self.mask = torch.zeros(out_channels, in_channels)
        self.bias = nn.Parameter(torch.Tensor(out_channels))

        self.reset_parameters()

    def reset_parameters(self):
        for i, neighbour in enumerate(self.expanded_neighbour_list):
            tmp = torch.zeros_like(self.weight[i * self.out_channels_per_joint : (i + 1) * self.out_channels_per_joint, neighbour])
            self.mask[i * self.out_channels_per_joint : (i + 1) * self.out_channels_per_joint, neighbour] = 1
            nn.init.kaiming_uniform_(tmp, a=math.sqrt(5))
            self.weight[i * self.out_channels_per_joint : (i + 1) * self.out_channels_per_joint, neighbour] = tmp

        fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
        bound = 1 / math.sqrt(fan_in)
        nn.init.uniform_(self.bias, -bound, bound)

        self.weight = nn.Parameter(self.weight)
        self.mask = nn.Parameter(self.mask, requires_grad=False)

    def forward(self, input):
        input = input.reshape(input.shape[0], -1)
        weight_masked = self.weight * self.mask
        res = F.linear(input, weight_masked, self.bias)
        if self.extra_dim1:
            res = res.reshape(res.shape + (1,))
        return res


class SkeletonPool(nn.Module):
    def __init__(self, edges, pooling_mode, channels_per_edge, last_pool=False):
        super(SkeletonPool, self).__init__()

        if pooling_mode != "mean":
            raise Exception("Unimplemented pooling mode in matrix_implementation")

        self.channels_per_edge = channels_per_edge
        self.pooling_mode = pooling_mode
        self.edge_num = len(edges)
        # self.edge_num = len(edges) + 1
        self.seq_list = []
        self.pooling_list = []
        self.new_edges = []
        degree = [0] * 100  # each element represents the degree of the corresponding joint

        for edge in edges:
            degree[edge[0]] += 1
            degree[edge[1]] += 1

        # seq_list contains multiple sub-lists where each sub-list is an edge chain from the joint whose degree > 2 to the end effectors or joints whose degree > 2.
        def find_seq(j, seq):
            nonlocal self, degree, edges

            if degree[j] > 2 and j != 0:
                self.seq_list.append(seq)
                seq = []

            if degree[j] == 1:
                self.seq_list.append(seq)
                return

            for idx, edge in enumerate(edges):
                if edge[0] == j:
                    find_seq(edge[1], seq + [idx])

        find_seq(0, [])
        # print(f'self.seq_list: {self.seq_list}')

        for seq in self.seq_list:
            if last_pool:
                self.pooling_list.append(seq)
                continue
            if len(seq) % 2 == 1:
                self.pooling_list.append([seq[0]])
                self.new_edges.append(edges[seq[0]])
                seq = seq[1:]
            for i in range(0, len(seq), 2):
                self.pooling_list.append([seq[i], seq[i + 1]])
                self.new_edges.append([edges[seq[i]][0], edges[seq[i + 1]][1]])
        # print(f'self.pooling_list: {self.pooling_list}')
        # print(f'self.new_egdes: {self.new_edges}')

        # add global position
        # self.pooling_list.append([self.edge_num - 1])

        self.description = "SkeletonPool(in_edge_num={}, out_edge_num={})".format(len(edges), len(self.pooling_list))

        self.weight = torch.zeros(len(self.pooling_list) * channels_per_edge, self.edge_num * channels_per_edge)

        for i, pair in enumerate(self.pooling_list):
            for j in pair:
                for c in range(channels_per_edge):
                    self.weight[i * channels_per_edge + c, j * channels_per_edge + c] = 1.0 / len(pair)

        self.weight = nn.Parameter(self.weight, requires_grad=False)

    def forward(self, input: torch.Tensor):
        # print('SkeletonPool')
        # print(f'input: {input.size()}')
        # print(f'self.weight: {self.weight.size()}')
        return torch.matmul(self.weight, input)


class SkeletonUnpool(nn.Module):
    def __init__(self, pooling_list, channels_per_edge):
        super(SkeletonUnpool, self).__init__()
        self.pooling_list = pooling_list
        self.input_edge_num = len(pooling_list)
        self.output_edge_num = 0
        self.channels_per_edge = channels_per_edge
        for t in self.pooling_list:
            self.output_edge_num += len(t)

        self.description = "SkeletonUnpool(in_edge_num={}, out_edge_num={})".format(
            self.input_edge_num,
            self.output_edge_num,
        )

        self.weight = torch.zeros(self.output_edge_num * channels_per_edge, self.input_edge_num * channels_per_edge)

        for i, pair in enumerate(self.pooling_list):
            for j in pair:
                for c in range(channels_per_edge):
                    self.weight[j * channels_per_edge + c, i * channels_per_edge + c] = 1

        self.weight = nn.Parameter(self.weight)
        self.weight.requires_grad_(False)

    def forward(self, input: torch.Tensor):
        # print('SkeletonUnpool')
        # print(f'input: {input.size()}')
        # print(f'self.weight: {self.weight.size()}')
        return torch.matmul(self.weight, input)


"""

Helper functions for skeleton operation

"""


def dfs(x, fa, vis, dist):
    vis[x] = 1
    for y in range(len(fa)):
        if (fa[y] == x or fa[x] == y) and vis[y] == 0:
            dist[y] = dist[x] + 1
            dfs(y, fa, vis, dist)


"""

def find_neighbor_joint(fa, threshold):

    neighbor_list = [[]]

    for x in range(1, len(fa)):

        vis = [0 for _ in range(len(fa))]

        dist = [0 for _ in range(len(fa))]

        dist[0] = 10000

        dfs(x, fa, vis, dist)

        neighbor = []

        for j in range(1, len(fa)):

            if dist[j] <= threshold:

                neighbor.append(j)

        neighbor_list.append(neighbor)



    neighbor = [0]

    for i, x in enumerate(neighbor_list):

        if i == 0: continue

        if 1 in x:

            neighbor.append(i)

            neighbor_list[i] = [0] + neighbor_list[i]

    neighbor_list[0] = neighbor

    return neighbor_list





def build_edge_topology(topology, offset):

    # get all edges (pa, child, offset)

    edges = []

    joint_num = len(topology)

    for i in range(1, joint_num):

        edges.append((topology[i], i, offset[i]))

    return edges

"""


def build_edge_topology(topology):
    # get all edges (pa, child)
    edges = []
    joint_num = len(topology)
    edges.append((0, joint_num))  # add an edge between the root joint and a virtual joint
    for i in range(1, joint_num):
        edges.append((topology[i], i))
    return edges


def build_joint_topology(edges, origin_names):
    parent = []
    offset = []
    names = []
    edge2joint = []
    joint_from_edge = []  # -1 means virtual joint
    joint_cnt = 0
    out_degree = [0] * (len(edges) + 10)
    for edge in edges:
        out_degree[edge[0]] += 1

    # add root joint
    joint_from_edge.append(-1)
    parent.append(0)
    offset.append(np.array([0, 0, 0]))
    names.append(origin_names[0])
    joint_cnt += 1

    def make_topology(edge_idx, pa):
        nonlocal edges, parent, offset, names, edge2joint, joint_from_edge, joint_cnt
        edge = edges[edge_idx]
        if out_degree[edge[0]] > 1:
            parent.append(pa)
            offset.append(np.array([0, 0, 0]))
            names.append(origin_names[edge[1]] + "_virtual")
            edge2joint.append(-1)
            pa = joint_cnt
            joint_cnt += 1

        parent.append(pa)
        offset.append(edge[2])
        names.append(origin_names[edge[1]])
        edge2joint.append(edge_idx)
        pa = joint_cnt
        joint_cnt += 1

        for idx, e in enumerate(edges):
            if e[0] == edge[1]:
                make_topology(idx, pa)

    for idx, e in enumerate(edges):
        if e[0] == 0:
            make_topology(idx, 0)

    return parent, offset, names, edge2joint


def calc_edge_mat(edges):
    edge_num = len(edges)
    # edge_mat[i][j] = distance between edge(i) and edge(j)
    edge_mat = [[100000] * edge_num for _ in range(edge_num)]
    for i in range(edge_num):
        edge_mat[i][i] = 0

    # initialize edge_mat with direct neighbor
    for i, a in enumerate(edges):
        for j, b in enumerate(edges):
            link = 0
            for x in range(2):
                for y in range(2):
                    if a[x] == b[y]:
                        link = 1
            if link:
                edge_mat[i][j] = 1

    # calculate all the pairs distance
    for k in range(edge_num):
        for i in range(edge_num):
            for j in range(edge_num):
                edge_mat[i][j] = min(edge_mat[i][j], edge_mat[i][k] + edge_mat[k][j])
    return edge_mat


def find_neighbor(edges, d):
    """

    Args:

        edges: The list contains N elements, each element represents (parent, child).

        d: Distance between edges (the distance of the same edge is 0 and the distance of adjacent edges is 1).



    Returns:

        The list contains N elements, each element is a list of edge indices whose distance <= d.

    """
    edge_mat = calc_edge_mat(edges)
    neighbor_list = []
    edge_num = len(edge_mat)
    for i in range(edge_num):
        neighbor = []
        for j in range(edge_num):
            if edge_mat[i][j] <= d:
                neighbor.append(j)
        neighbor_list.append(neighbor)

    # # add neighbor for global part
    # global_part_neighbor = neighbor_list[0].copy()
    # """
    # Line #373 is buggy. Thanks @crissallan!!
    # See issue #30 (https://github.com/DeepMotionEditing/deep-motion-editing/issues/30)
    # However, fixing this bug will make it unable to load the pretrained model and
    # affect the reproducibility of quantitative error reported in the paper.
    # It is not a fatal bug so we didn't touch it and we are looking for possible solutions.
    # """
    # for i in global_part_neighbor:
    #     neighbor_list[i].append(edge_num)
    # neighbor_list.append(global_part_neighbor)

    return neighbor_list