File size: 17,914 Bytes
721e031 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
# This script is modified from https://github.com/DeepMotionEditing/deep-motion-editing
# Licensed under:
"""
Copyright (c) 2020, Kfir Aberman, Peizhuo Li, Yijia Weng, Dani Lischinski, Olga Sorkine-Hornung, Daniel Cohen-Or and Baoquan Chen.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class SkeletonConv(nn.Module):
def __init__(
self,
neighbour_list,
in_channels,
out_channels,
kernel_size,
joint_num,
stride=1,
padding=0,
bias=True,
padding_mode="zeros",
add_offset=False,
in_offset_channel=0,
):
self.in_channels_per_joint = in_channels // joint_num
self.out_channels_per_joint = out_channels // joint_num
if in_channels % joint_num != 0 or out_channels % joint_num != 0:
raise Exception("BAD")
super(SkeletonConv, self).__init__()
if padding_mode == "zeros":
padding_mode = "constant"
if padding_mode == "reflection":
padding_mode = "reflect"
self.expanded_neighbour_list = []
self.expanded_neighbour_list_offset = []
self.neighbour_list = neighbour_list
self.add_offset = add_offset
self.joint_num = joint_num
self.stride = stride
self.dilation = 1
self.groups = 1
self.padding = padding
self.padding_mode = padding_mode
self._padding_repeated_twice = (padding, padding)
for neighbour in neighbour_list:
expanded = []
for k in neighbour:
for i in range(self.in_channels_per_joint):
expanded.append(k * self.in_channels_per_joint + i)
self.expanded_neighbour_list.append(expanded)
if self.add_offset:
self.offset_enc = SkeletonLinear(neighbour_list, in_offset_channel * len(neighbour_list), out_channels)
for neighbour in neighbour_list:
expanded = []
for k in neighbour:
for i in range(add_offset):
expanded.append(k * in_offset_channel + i)
self.expanded_neighbour_list_offset.append(expanded)
self.weight = torch.zeros(out_channels, in_channels, kernel_size)
if bias:
self.bias = torch.zeros(out_channels)
else:
self.register_parameter("bias", None)
self.mask = torch.zeros_like(self.weight)
for i, neighbour in enumerate(self.expanded_neighbour_list):
self.mask[self.out_channels_per_joint * i : self.out_channels_per_joint * (i + 1), neighbour, ...] = 1
self.mask = nn.Parameter(self.mask, requires_grad=False)
self.description = (
"SkeletonConv(in_channels_per_armature={}, out_channels_per_armature={}, kernel_size={}, "
"joint_num={}, stride={}, padding={}, bias={})".format(
in_channels // joint_num, out_channels // joint_num, kernel_size, joint_num, stride, padding, bias
)
)
self.reset_parameters()
def reset_parameters(self):
for i, neighbour in enumerate(self.expanded_neighbour_list):
""" Use temporary variable to avoid assign to copy of slice, which might lead to unexpected result """
tmp = torch.zeros_like(self.weight[self.out_channels_per_joint * i : self.out_channels_per_joint * (i + 1), neighbour, ...])
nn.init.kaiming_uniform_(tmp, a=math.sqrt(5))
self.weight[self.out_channels_per_joint * i : self.out_channels_per_joint * (i + 1), neighbour, ...] = tmp
if self.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(
self.weight[self.out_channels_per_joint * i : self.out_channels_per_joint * (i + 1), neighbour, ...]
)
bound = 1 / math.sqrt(fan_in)
tmp = torch.zeros_like(self.bias[self.out_channels_per_joint * i : self.out_channels_per_joint * (i + 1)])
nn.init.uniform_(tmp, -bound, bound)
self.bias[self.out_channels_per_joint * i : self.out_channels_per_joint * (i + 1)] = tmp
self.weight = nn.Parameter(self.weight)
if self.bias is not None:
self.bias = nn.Parameter(self.bias)
def set_offset(self, offset):
if not self.add_offset:
raise Exception("Wrong Combination of Parameters")
self.offset = offset.reshape(offset.shape[0], -1)
def forward(self, input):
# print('SkeletonConv')
weight_masked = self.weight * self.mask
# print(f'input: {input.size()}')
res = F.conv1d(
F.pad(input, self._padding_repeated_twice, mode=self.padding_mode),
weight_masked,
self.bias,
self.stride,
0,
self.dilation,
self.groups,
)
if self.add_offset:
offset_res = self.offset_enc(self.offset)
offset_res = offset_res.reshape(offset_res.shape + (1,))
res += offset_res / 100
# print(f'res: {res.size()}')
return res
class SkeletonLinear(nn.Module):
def __init__(self, neighbour_list, in_channels, out_channels, extra_dim1=False):
super(SkeletonLinear, self).__init__()
self.neighbour_list = neighbour_list
self.in_channels = in_channels
self.out_channels = out_channels
self.in_channels_per_joint = in_channels // len(neighbour_list)
self.out_channels_per_joint = out_channels // len(neighbour_list)
self.extra_dim1 = extra_dim1
self.expanded_neighbour_list = []
for neighbour in neighbour_list:
expanded = []
for k in neighbour:
for i in range(self.in_channels_per_joint):
expanded.append(k * self.in_channels_per_joint + i)
self.expanded_neighbour_list.append(expanded)
self.weight = torch.zeros(out_channels, in_channels)
self.mask = torch.zeros(out_channels, in_channels)
self.bias = nn.Parameter(torch.Tensor(out_channels))
self.reset_parameters()
def reset_parameters(self):
for i, neighbour in enumerate(self.expanded_neighbour_list):
tmp = torch.zeros_like(self.weight[i * self.out_channels_per_joint : (i + 1) * self.out_channels_per_joint, neighbour])
self.mask[i * self.out_channels_per_joint : (i + 1) * self.out_channels_per_joint, neighbour] = 1
nn.init.kaiming_uniform_(tmp, a=math.sqrt(5))
self.weight[i * self.out_channels_per_joint : (i + 1) * self.out_channels_per_joint, neighbour] = tmp
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias, -bound, bound)
self.weight = nn.Parameter(self.weight)
self.mask = nn.Parameter(self.mask, requires_grad=False)
def forward(self, input):
input = input.reshape(input.shape[0], -1)
weight_masked = self.weight * self.mask
res = F.linear(input, weight_masked, self.bias)
if self.extra_dim1:
res = res.reshape(res.shape + (1,))
return res
class SkeletonPool(nn.Module):
def __init__(self, edges, pooling_mode, channels_per_edge, last_pool=False):
super(SkeletonPool, self).__init__()
if pooling_mode != "mean":
raise Exception("Unimplemented pooling mode in matrix_implementation")
self.channels_per_edge = channels_per_edge
self.pooling_mode = pooling_mode
self.edge_num = len(edges)
# self.edge_num = len(edges) + 1
self.seq_list = []
self.pooling_list = []
self.new_edges = []
degree = [0] * 100 # each element represents the degree of the corresponding joint
for edge in edges:
degree[edge[0]] += 1
degree[edge[1]] += 1
# seq_list contains multiple sub-lists where each sub-list is an edge chain from the joint whose degree > 2 to the end effectors or joints whose degree > 2.
def find_seq(j, seq):
nonlocal self, degree, edges
if degree[j] > 2 and j != 0:
self.seq_list.append(seq)
seq = []
if degree[j] == 1:
self.seq_list.append(seq)
return
for idx, edge in enumerate(edges):
if edge[0] == j:
find_seq(edge[1], seq + [idx])
find_seq(0, [])
# print(f'self.seq_list: {self.seq_list}')
for seq in self.seq_list:
if last_pool:
self.pooling_list.append(seq)
continue
if len(seq) % 2 == 1:
self.pooling_list.append([seq[0]])
self.new_edges.append(edges[seq[0]])
seq = seq[1:]
for i in range(0, len(seq), 2):
self.pooling_list.append([seq[i], seq[i + 1]])
self.new_edges.append([edges[seq[i]][0], edges[seq[i + 1]][1]])
# print(f'self.pooling_list: {self.pooling_list}')
# print(f'self.new_egdes: {self.new_edges}')
# add global position
# self.pooling_list.append([self.edge_num - 1])
self.description = "SkeletonPool(in_edge_num={}, out_edge_num={})".format(len(edges), len(self.pooling_list))
self.weight = torch.zeros(len(self.pooling_list) * channels_per_edge, self.edge_num * channels_per_edge)
for i, pair in enumerate(self.pooling_list):
for j in pair:
for c in range(channels_per_edge):
self.weight[i * channels_per_edge + c, j * channels_per_edge + c] = 1.0 / len(pair)
self.weight = nn.Parameter(self.weight, requires_grad=False)
def forward(self, input: torch.Tensor):
# print('SkeletonPool')
# print(f'input: {input.size()}')
# print(f'self.weight: {self.weight.size()}')
return torch.matmul(self.weight, input)
class SkeletonUnpool(nn.Module):
def __init__(self, pooling_list, channels_per_edge):
super(SkeletonUnpool, self).__init__()
self.pooling_list = pooling_list
self.input_edge_num = len(pooling_list)
self.output_edge_num = 0
self.channels_per_edge = channels_per_edge
for t in self.pooling_list:
self.output_edge_num += len(t)
self.description = "SkeletonUnpool(in_edge_num={}, out_edge_num={})".format(
self.input_edge_num,
self.output_edge_num,
)
self.weight = torch.zeros(self.output_edge_num * channels_per_edge, self.input_edge_num * channels_per_edge)
for i, pair in enumerate(self.pooling_list):
for j in pair:
for c in range(channels_per_edge):
self.weight[j * channels_per_edge + c, i * channels_per_edge + c] = 1
self.weight = nn.Parameter(self.weight)
self.weight.requires_grad_(False)
def forward(self, input: torch.Tensor):
# print('SkeletonUnpool')
# print(f'input: {input.size()}')
# print(f'self.weight: {self.weight.size()}')
return torch.matmul(self.weight, input)
"""
Helper functions for skeleton operation
"""
def dfs(x, fa, vis, dist):
vis[x] = 1
for y in range(len(fa)):
if (fa[y] == x or fa[x] == y) and vis[y] == 0:
dist[y] = dist[x] + 1
dfs(y, fa, vis, dist)
"""
def find_neighbor_joint(fa, threshold):
neighbor_list = [[]]
for x in range(1, len(fa)):
vis = [0 for _ in range(len(fa))]
dist = [0 for _ in range(len(fa))]
dist[0] = 10000
dfs(x, fa, vis, dist)
neighbor = []
for j in range(1, len(fa)):
if dist[j] <= threshold:
neighbor.append(j)
neighbor_list.append(neighbor)
neighbor = [0]
for i, x in enumerate(neighbor_list):
if i == 0: continue
if 1 in x:
neighbor.append(i)
neighbor_list[i] = [0] + neighbor_list[i]
neighbor_list[0] = neighbor
return neighbor_list
def build_edge_topology(topology, offset):
# get all edges (pa, child, offset)
edges = []
joint_num = len(topology)
for i in range(1, joint_num):
edges.append((topology[i], i, offset[i]))
return edges
"""
def build_edge_topology(topology):
# get all edges (pa, child)
edges = []
joint_num = len(topology)
edges.append((0, joint_num)) # add an edge between the root joint and a virtual joint
for i in range(1, joint_num):
edges.append((topology[i], i))
return edges
def build_joint_topology(edges, origin_names):
parent = []
offset = []
names = []
edge2joint = []
joint_from_edge = [] # -1 means virtual joint
joint_cnt = 0
out_degree = [0] * (len(edges) + 10)
for edge in edges:
out_degree[edge[0]] += 1
# add root joint
joint_from_edge.append(-1)
parent.append(0)
offset.append(np.array([0, 0, 0]))
names.append(origin_names[0])
joint_cnt += 1
def make_topology(edge_idx, pa):
nonlocal edges, parent, offset, names, edge2joint, joint_from_edge, joint_cnt
edge = edges[edge_idx]
if out_degree[edge[0]] > 1:
parent.append(pa)
offset.append(np.array([0, 0, 0]))
names.append(origin_names[edge[1]] + "_virtual")
edge2joint.append(-1)
pa = joint_cnt
joint_cnt += 1
parent.append(pa)
offset.append(edge[2])
names.append(origin_names[edge[1]])
edge2joint.append(edge_idx)
pa = joint_cnt
joint_cnt += 1
for idx, e in enumerate(edges):
if e[0] == edge[1]:
make_topology(idx, pa)
for idx, e in enumerate(edges):
if e[0] == 0:
make_topology(idx, 0)
return parent, offset, names, edge2joint
def calc_edge_mat(edges):
edge_num = len(edges)
# edge_mat[i][j] = distance between edge(i) and edge(j)
edge_mat = [[100000] * edge_num for _ in range(edge_num)]
for i in range(edge_num):
edge_mat[i][i] = 0
# initialize edge_mat with direct neighbor
for i, a in enumerate(edges):
for j, b in enumerate(edges):
link = 0
for x in range(2):
for y in range(2):
if a[x] == b[y]:
link = 1
if link:
edge_mat[i][j] = 1
# calculate all the pairs distance
for k in range(edge_num):
for i in range(edge_num):
for j in range(edge_num):
edge_mat[i][j] = min(edge_mat[i][j], edge_mat[i][k] + edge_mat[k][j])
return edge_mat
def find_neighbor(edges, d):
"""
Args:
edges: The list contains N elements, each element represents (parent, child).
d: Distance between edges (the distance of the same edge is 0 and the distance of adjacent edges is 1).
Returns:
The list contains N elements, each element is a list of edge indices whose distance <= d.
"""
edge_mat = calc_edge_mat(edges)
neighbor_list = []
edge_num = len(edge_mat)
for i in range(edge_num):
neighbor = []
for j in range(edge_num):
if edge_mat[i][j] <= d:
neighbor.append(j)
neighbor_list.append(neighbor)
# # add neighbor for global part
# global_part_neighbor = neighbor_list[0].copy()
# """
# Line #373 is buggy. Thanks @crissallan!!
# See issue #30 (https://github.com/DeepMotionEditing/deep-motion-editing/issues/30)
# However, fixing this bug will make it unable to load the pretrained model and
# affect the reproducibility of quantitative error reported in the paper.
# It is not a fatal bug so we didn't touch it and we are looking for possible solutions.
# """
# for i in global_part_neighbor:
# neighbor_list[i].append(edge_num)
# neighbor_list.append(global_part_neighbor)
return neighbor_list
|