File size: 11,028 Bytes
5a030e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
from typing import Optional,Union
try:
    from typing import Literal
except Exception as e:
    from typing_extensions import Literal
import numpy as np
import torch
import torchcrepe
from torch import nn
from torch.nn import functional as F
import scipy

#from:https://github.com/fishaudio/fish-diffusion

def repeat_expand(
    content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
):
    """Repeat content to target length.
    This is a wrapper of torch.nn.functional.interpolate.

    Args:
        content (torch.Tensor): tensor
        target_len (int): target length
        mode (str, optional): interpolation mode. Defaults to "nearest".

    Returns:
        torch.Tensor: tensor
    """

    ndim = content.ndim

    if content.ndim == 1:
        content = content[None, None]
    elif content.ndim == 2:
        content = content[None]

    assert content.ndim == 3

    is_np = isinstance(content, np.ndarray)
    if is_np:
        content = torch.from_numpy(content)

    results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)

    if is_np:
        results = results.numpy()

    if ndim == 1:
        return results[0, 0]
    elif ndim == 2:
        return results[0]


class BasePitchExtractor:
    def __init__(
        self,
        hop_length: int = 512,
        f0_min: float = 50.0,
        f0_max: float = 1100.0,
        keep_zeros: bool = True,
    ):
        """Base pitch extractor.

        Args:
            hop_length (int, optional): Hop length. Defaults to 512.
            f0_min (float, optional): Minimum f0. Defaults to 50.0.
            f0_max (float, optional): Maximum f0. Defaults to 1100.0.
            keep_zeros (bool, optional): Whether keep zeros in pitch. Defaults to True.
        """

        self.hop_length = hop_length
        self.f0_min = f0_min
        self.f0_max = f0_max
        self.keep_zeros = keep_zeros

    def __call__(self, x, sampling_rate=44100, pad_to=None):
        raise NotImplementedError("BasePitchExtractor is not callable.")

    def post_process(self, x, sampling_rate, f0, pad_to):
        if isinstance(f0, np.ndarray):
            f0 = torch.from_numpy(f0).float().to(x.device)

        if pad_to is None:
            return f0

        f0 = repeat_expand(f0, pad_to)

        if self.keep_zeros:
            return f0
        
        vuv_vector = torch.zeros_like(f0)
        vuv_vector[f0 > 0.0] = 1.0
        vuv_vector[f0 <= 0.0] = 0.0
        
        # Remove 0 frequency and apply linear interpolation
        nzindex = torch.nonzero(f0).squeeze()
        f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
        time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
        time_frame = np.arange(pad_to) * self.hop_length / sampling_rate

        if f0.shape[0] <= 0:
            return torch.zeros(pad_to, dtype=torch.float, device=x.device),torch.zeros(pad_to, dtype=torch.float, device=x.device)

        if f0.shape[0] == 1:
            return torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0],torch.ones(pad_to, dtype=torch.float, device=x.device)
    
        # Probably can be rewritten with torch?
        f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
        vuv_vector = vuv_vector.cpu().numpy()
        vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
        
        return f0,vuv_vector


class MaskedAvgPool1d(nn.Module):
    def __init__(
        self, kernel_size: int, stride: Optional[int] = None, padding: Optional[int] = 0
    ):
        """An implementation of mean pooling that supports masked values.

        Args:
            kernel_size (int): The size of the median pooling window.
            stride (int, optional): The stride of the median pooling window. Defaults to None.
            padding (int, optional): The padding of the median pooling window. Defaults to 0.
        """

        super(MaskedAvgPool1d, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride or kernel_size
        self.padding = padding

    def forward(self, x, mask=None):
        ndim = x.dim()
        if ndim == 2:
            x = x.unsqueeze(1)

        assert (
            x.dim() == 3
        ), "Input tensor must have 2 or 3 dimensions (batch_size, channels, width)"

        # Apply the mask by setting masked elements to zero, or make NaNs zero
        if mask is None:
            mask = ~torch.isnan(x)

        # Ensure mask has the same shape as the input tensor
        assert x.shape == mask.shape, "Input tensor and mask must have the same shape"

        masked_x = torch.where(mask, x, torch.zeros_like(x))
        # Create a ones kernel with the same number of channels as the input tensor
        ones_kernel = torch.ones(x.size(1), 1, self.kernel_size, device=x.device)

        # Perform sum pooling
        sum_pooled = nn.functional.conv1d(
            masked_x,
            ones_kernel,
            stride=self.stride,
            padding=self.padding,
            groups=x.size(1),
        )

        # Count the non-masked (valid) elements in each pooling window
        valid_count = nn.functional.conv1d(
            mask.float(),
            ones_kernel,
            stride=self.stride,
            padding=self.padding,
            groups=x.size(1),
        )
        valid_count = valid_count.clamp(min=1)  # Avoid division by zero

        # Perform masked average pooling
        avg_pooled = sum_pooled / valid_count

        # Fill zero values with NaNs
        avg_pooled[avg_pooled == 0] = float("nan")

        if ndim == 2:
            return avg_pooled.squeeze(1)

        return avg_pooled


class MaskedMedianPool1d(nn.Module):
    def __init__(
        self, kernel_size: int, stride: Optional[int] = None, padding: Optional[int] = 0
    ):
        """An implementation of median pooling that supports masked values.

        This implementation is inspired by the median pooling implementation in
        https://gist.github.com/rwightman/f2d3849281624be7c0f11c85c87c1598

        Args:
            kernel_size (int): The size of the median pooling window.
            stride (int, optional): The stride of the median pooling window. Defaults to None.
            padding (int, optional): The padding of the median pooling window. Defaults to 0.
        """

        super(MaskedMedianPool1d, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride or kernel_size
        self.padding = padding

    def forward(self, x, mask=None):
        ndim = x.dim()
        if ndim == 2:
            x = x.unsqueeze(1)

        assert (
            x.dim() == 3
        ), "Input tensor must have 2 or 3 dimensions (batch_size, channels, width)"

        if mask is None:
            mask = ~torch.isnan(x)

        assert x.shape == mask.shape, "Input tensor and mask must have the same shape"

        masked_x = torch.where(mask, x, torch.zeros_like(x))

        x = F.pad(masked_x, (self.padding, self.padding), mode="reflect")
        mask = F.pad(
            mask.float(), (self.padding, self.padding), mode="constant", value=0
        )

        x = x.unfold(2, self.kernel_size, self.stride)
        mask = mask.unfold(2, self.kernel_size, self.stride)

        x = x.contiguous().view(x.size()[:3] + (-1,))
        mask = mask.contiguous().view(mask.size()[:3] + (-1,)).to(x.device)

        # Combine the mask with the input tensor
        #x_masked = torch.where(mask.bool(), x, torch.fill_(torch.zeros_like(x),float("inf")))
        x_masked = torch.where(mask.bool(), x, torch.FloatTensor([float("inf")]).to(x.device))

        # Sort the masked tensor along the last dimension
        x_sorted, _ = torch.sort(x_masked, dim=-1)

        # Compute the count of non-masked (valid) values
        valid_count = mask.sum(dim=-1)

        # Calculate the index of the median value for each pooling window
        median_idx = (torch.div((valid_count - 1), 2, rounding_mode='trunc')).clamp(min=0)

        # Gather the median values using the calculated indices
        median_pooled = x_sorted.gather(-1, median_idx.unsqueeze(-1).long()).squeeze(-1)

        # Fill infinite values with NaNs
        median_pooled[torch.isinf(median_pooled)] = float("nan")
        
        if ndim == 2:
            return median_pooled.squeeze(1)

        return median_pooled


class CrepePitchExtractor(BasePitchExtractor):
    def __init__(
        self,
        hop_length: int = 512,
        f0_min: float = 50.0,
        f0_max: float = 1100.0,
        threshold: float = 0.05,
        keep_zeros: bool = False,
        device = None,
        model: Literal["full", "tiny"] = "full",
        use_fast_filters: bool = True,
    ):
        super().__init__(hop_length, f0_min, f0_max, keep_zeros)

        self.threshold = threshold
        self.model = model
        self.use_fast_filters = use_fast_filters
        self.hop_length = hop_length
        if device is None:
            self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        else:
            self.dev = torch.device(device)
        if self.use_fast_filters:
            self.median_filter = MaskedMedianPool1d(3, 1, 1).to(device)
            self.mean_filter = MaskedAvgPool1d(3, 1, 1).to(device)

    def __call__(self, x, sampling_rate=44100, pad_to=None):
        """Extract pitch using crepe.


        Args:
            x (torch.Tensor): Audio signal, shape (1, T).
            sampling_rate (int, optional): Sampling rate. Defaults to 44100.
            pad_to (int, optional): Pad to length. Defaults to None.

        Returns:
            torch.Tensor: Pitch, shape (T // hop_length,).
        """

        assert x.ndim == 2, f"Expected 2D tensor, got {x.ndim}D tensor."
        assert x.shape[0] == 1, f"Expected 1 channel, got {x.shape[0]} channels."

        x = x.to(self.dev)
        f0, pd = torchcrepe.predict(
            x,
            sampling_rate,
            self.hop_length,
            self.f0_min,
            self.f0_max,
            pad=True,
            model=self.model,
            batch_size=1024,
            device=x.device,
            return_periodicity=True,
        )

        # Filter, remove silence, set uv threshold, refer to the original warehouse readme
        if self.use_fast_filters:
            pd = self.median_filter(pd)
        else:
            pd = torchcrepe.filter.median(pd, 3)

        pd = torchcrepe.threshold.Silence(-60.0)(pd, x, sampling_rate, 512)
        f0 = torchcrepe.threshold.At(self.threshold)(f0, pd)
        
        if self.use_fast_filters:
            f0 = self.mean_filter(f0)
        else:
            f0 = torchcrepe.filter.mean(f0, 3)

        f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0)[0]

        if torch.all(f0 == 0):
            rtn = f0.cpu().numpy() if pad_to==None else np.zeros(pad_to)
            return rtn,rtn
        
        return self.post_process(x, sampling_rate, f0, pad_to)