File size: 17,761 Bytes
5a030e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import os
import glob
import re
import sys
import argparse
import logging
import json
import subprocess
import warnings
import random
import functools

import librosa
import numpy as np
from scipy.io.wavfile import read
import torch
from torch.nn import functional as F
from modules.commons import sequence_mask
from hubert import hubert_model

MATPLOTLIB_FLAG = False

logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logger = logging

f0_bin = 256
f0_max = 1100.0
f0_min = 50.0
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)


# def normalize_f0(f0, random_scale=True):
#     f0_norm = f0.clone()  # create a copy of the input Tensor
#     batch_size, _, frame_length = f0_norm.shape
#     for i in range(batch_size):
#         means = torch.mean(f0_norm[i, 0, :])
#         if random_scale:
#             factor = random.uniform(0.8, 1.2)
#         else:
#             factor = 1
#         f0_norm[i, 0, :] = (f0_norm[i, 0, :] - means) * factor
#     return f0_norm
# def normalize_f0(f0, random_scale=True):
#     means = torch.mean(f0[:, 0, :], dim=1, keepdim=True)
#     if random_scale:
#         factor = torch.Tensor(f0.shape[0],1).uniform_(0.8, 1.2).to(f0.device)
#     else:
#         factor = torch.ones(f0.shape[0], 1, 1).to(f0.device)
#     f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
#     return f0_norm

def deprecated(func):
    """This is a decorator which can be used to mark functions
    as deprecated. It will result in a warning being emitted
    when the function is used."""
    @functools.wraps(func)
    def new_func(*args, **kwargs):
        warnings.simplefilter('always', DeprecationWarning)  # turn off filter
        warnings.warn("Call to deprecated function {}.".format(func.__name__),
                      category=DeprecationWarning,
                      stacklevel=2)
        warnings.simplefilter('default', DeprecationWarning)  # reset filter
        return func(*args, **kwargs)
    return new_func

def normalize_f0(f0, x_mask, uv, random_scale=True):
    # calculate means based on x_mask
    uv_sum = torch.sum(uv, dim=1, keepdim=True)
    uv_sum[uv_sum == 0] = 9999
    means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum

    if random_scale:
        factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
    else:
        factor = torch.ones(f0.shape[0], 1).to(f0.device)
    # normalize f0 based on means and factor
    f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
    if torch.isnan(f0_norm).any():
        exit(0)
    return f0_norm * x_mask

def compute_f0_uv_torchcrepe(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512,device=None,cr_threshold=0.05):
    from modules.crepe import CrepePitchExtractor
    x = wav_numpy
    if p_len is None:
        p_len = x.shape[0]//hop_length
    else:
        assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error"
    
    f0_min = 50
    f0_max = 1100
    F0Creper = CrepePitchExtractor(hop_length=hop_length,f0_min=f0_min,f0_max=f0_max,device=device,threshold=cr_threshold)
    f0,uv = F0Creper(x[None,:].float(),sampling_rate,pad_to=p_len)
    return f0,uv

def plot_data_to_numpy(x, y):
    global MATPLOTLIB_FLAG
    if not MATPLOTLIB_FLAG:
        import matplotlib
        matplotlib.use("Agg")
        MATPLOTLIB_FLAG = True
        mpl_logger = logging.getLogger('matplotlib')
        mpl_logger.setLevel(logging.WARNING)
    import matplotlib.pylab as plt
    import numpy as np

    fig, ax = plt.subplots(figsize=(10, 2))
    plt.plot(x)
    plt.plot(y)
    plt.tight_layout()

    fig.canvas.draw()
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close()
    return data



def interpolate_f0(f0):

    data = np.reshape(f0, (f0.size, 1))

    vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
    vuv_vector[data > 0.0] = 1.0
    vuv_vector[data <= 0.0] = 0.0

    ip_data = data

    frame_number = data.size
    last_value = 0.0
    for i in range(frame_number):
        if data[i] <= 0.0:
            j = i + 1
            for j in range(i + 1, frame_number):
                if data[j] > 0.0:
                    break
            if j < frame_number - 1:
                if last_value > 0.0:
                    step = (data[j] - data[i - 1]) / float(j - i)
                    for k in range(i, j):
                        ip_data[k] = data[i - 1] + step * (k - i + 1)
                else:
                    for k in range(i, j):
                        ip_data[k] = data[j]
            else:
                for k in range(i, frame_number):
                    ip_data[k] = last_value
        else:
            ip_data[i] = data[i] # this may not be necessary
            last_value = data[i]

    return ip_data[:,0], vuv_vector[:,0]


def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
    import parselmouth
    x = wav_numpy
    if p_len is None:
        p_len = x.shape[0]//hop_length
    else:
        assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error"
    time_step = hop_length / sampling_rate * 1000
    f0_min = 50
    f0_max = 1100
    f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac(
        time_step=time_step / 1000, voicing_threshold=0.6,
        pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']

    pad_size=(p_len - len(f0) + 1) // 2
    if(pad_size>0 or p_len - len(f0) - pad_size>0):
        f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
    return f0

def resize_f0(x, target_len):
    source = np.array(x)
    source[source<0.001] = np.nan
    target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
    res = np.nan_to_num(target)
    return res

def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
    import pyworld
    if p_len is None:
        p_len = wav_numpy.shape[0]//hop_length
    f0, t = pyworld.dio(
        wav_numpy.astype(np.double),
        fs=sampling_rate,
        f0_ceil=800,
        frame_period=1000 * hop_length / sampling_rate,
    )
    f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
    for index, pitch in enumerate(f0):
        f0[index] = round(pitch, 1)
    return resize_f0(f0, p_len)

def f0_to_coarse(f0):
  is_torch = isinstance(f0, torch.Tensor)
  f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
  f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1

  f0_mel[f0_mel <= 1] = 1
  f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
  f0_coarse = (f0_mel + 0.5).int() if is_torch else np.rint(f0_mel).astype(np.int)
  assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
  return f0_coarse


def get_hubert_model():
  vec_path = "hubert/checkpoint_best_legacy_500.pt"
  print("load model(s) from {}".format(vec_path))
  from fairseq import checkpoint_utils
  models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
    [vec_path],
    suffix="",
  )
  model = models[0]
  model.eval()
  return model

def get_hubert_content(hmodel, wav_16k_tensor):
  feats = wav_16k_tensor
  if feats.dim() == 2:  # double channels
    feats = feats.mean(-1)
  assert feats.dim() == 1, feats.dim()
  feats = feats.view(1, -1)
  padding_mask = torch.BoolTensor(feats.shape).fill_(False)
  inputs = {
    "source": feats.to(wav_16k_tensor.device),
    "padding_mask": padding_mask.to(wav_16k_tensor.device),
    "output_layer": 9,  # layer 9
  }
  with torch.no_grad():
    logits = hmodel.extract_features(**inputs)
    feats = hmodel.final_proj(logits[0])
  return feats.transpose(1, 2)


def get_content(cmodel, y):
    with torch.no_grad():
        c = cmodel.extract_features(y.squeeze(1))[0]
    c = c.transpose(1, 2)
    return c



def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
    assert os.path.isfile(checkpoint_path)
    checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
    iteration = checkpoint_dict['iteration']
    learning_rate = checkpoint_dict['learning_rate']
    if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
        optimizer.load_state_dict(checkpoint_dict['optimizer'])
    saved_state_dict = checkpoint_dict['model']
    if hasattr(model, 'module'):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    new_state_dict = {}
    for k, v in state_dict.items():
        try:
            # assert "dec" in k or "disc" in k
            # print("load", k)
            new_state_dict[k] = saved_state_dict[k]
            assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
        except:
            print("error, %s is not in the checkpoint" % k)
            logger.info("%s is not in the checkpoint" % k)
            new_state_dict[k] = v
    if hasattr(model, 'module'):
        model.module.load_state_dict(new_state_dict)
    else:
        model.load_state_dict(new_state_dict)
    print("load ")
    logger.info("Loaded checkpoint '{}' (iteration {})".format(
        checkpoint_path, iteration))
    return model, optimizer, learning_rate, iteration


def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
  logger.info("Saving model and optimizer state at iteration {} to {}".format(
    iteration, checkpoint_path))
  if hasattr(model, 'module'):
    state_dict = model.module.state_dict()
  else:
    state_dict = model.state_dict()
  torch.save({'model': state_dict,
              'iteration': iteration,
              'optimizer': optimizer.state_dict(),
              'learning_rate': learning_rate}, checkpoint_path)

def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
  """Freeing up space by deleting saved ckpts

  Arguments:
  path_to_models    --  Path to the model directory
  n_ckpts_to_keep   --  Number of ckpts to keep, excluding G_0.pth and D_0.pth
  sort_by_time      --  True -> chronologically delete ckpts
                        False -> lexicographically delete ckpts
  """
  ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
  name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
  time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
  sort_key = time_key if sort_by_time else name_key
  x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key)
  to_del = [os.path.join(path_to_models, fn) for fn in
            (x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
  del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
  del_routine = lambda x: [os.remove(x), del_info(x)]
  rs = [del_routine(fn) for fn in to_del]

def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
  for k, v in scalars.items():
    writer.add_scalar(k, v, global_step)
  for k, v in histograms.items():
    writer.add_histogram(k, v, global_step)
  for k, v in images.items():
    writer.add_image(k, v, global_step, dataformats='HWC')
  for k, v in audios.items():
    writer.add_audio(k, v, global_step, audio_sampling_rate)


def latest_checkpoint_path(dir_path, regex="G_*.pth"):
  f_list = glob.glob(os.path.join(dir_path, regex))
  f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
  x = f_list[-1]
  print(x)
  return x


def plot_spectrogram_to_numpy(spectrogram):
  global MATPLOTLIB_FLAG
  if not MATPLOTLIB_FLAG:
    import matplotlib
    matplotlib.use("Agg")
    MATPLOTLIB_FLAG = True
    mpl_logger = logging.getLogger('matplotlib')
    mpl_logger.setLevel(logging.WARNING)
  import matplotlib.pylab as plt
  import numpy as np

  fig, ax = plt.subplots(figsize=(10,2))
  im = ax.imshow(spectrogram, aspect="auto", origin="lower",
                  interpolation='none')
  plt.colorbar(im, ax=ax)
  plt.xlabel("Frames")
  plt.ylabel("Channels")
  plt.tight_layout()

  fig.canvas.draw()
  data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
  data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
  plt.close()
  return data


def plot_alignment_to_numpy(alignment, info=None):
  global MATPLOTLIB_FLAG
  if not MATPLOTLIB_FLAG:
    import matplotlib
    matplotlib.use("Agg")
    MATPLOTLIB_FLAG = True
    mpl_logger = logging.getLogger('matplotlib')
    mpl_logger.setLevel(logging.WARNING)
  import matplotlib.pylab as plt
  import numpy as np

  fig, ax = plt.subplots(figsize=(6, 4))
  im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
                  interpolation='none')
  fig.colorbar(im, ax=ax)
  xlabel = 'Decoder timestep'
  if info is not None:
      xlabel += '\n\n' + info
  plt.xlabel(xlabel)
  plt.ylabel('Encoder timestep')
  plt.tight_layout()

  fig.canvas.draw()
  data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
  data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
  plt.close()
  return data


def load_wav_to_torch(full_path):
  sampling_rate, data = read(full_path)
  return torch.FloatTensor(data.astype(np.float32)), sampling_rate


def load_filepaths_and_text(filename, split="|"):
  with open(filename, encoding='utf-8') as f:
    filepaths_and_text = [line.strip().split(split) for line in f]
  return filepaths_and_text


def get_hparams(init=True):
  parser = argparse.ArgumentParser()
  parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
                      help='JSON file for configuration')
  parser.add_argument('-m', '--model', type=str, required=True,
                      help='Model name')

  args = parser.parse_args()
  model_dir = os.path.join("./logs", args.model)

  if not os.path.exists(model_dir):
    os.makedirs(model_dir)

  config_path = args.config
  config_save_path = os.path.join(model_dir, "config.json")
  if init:
    with open(config_path, "r") as f:
      data = f.read()
    with open(config_save_path, "w") as f:
      f.write(data)
  else:
    with open(config_save_path, "r") as f:
      data = f.read()
  config = json.loads(data)

  hparams = HParams(**config)
  hparams.model_dir = model_dir
  return hparams


def get_hparams_from_dir(model_dir):
  config_save_path = os.path.join(model_dir, "config.json")
  with open(config_save_path, "r") as f:
    data = f.read()
  config = json.loads(data)

  hparams =HParams(**config)
  hparams.model_dir = model_dir
  return hparams


def get_hparams_from_file(config_path):
  with open(config_path, "r") as f:
    data = f.read()
  config = json.loads(data)

  hparams =HParams(**config)
  return hparams


def check_git_hash(model_dir):
  source_dir = os.path.dirname(os.path.realpath(__file__))
  if not os.path.exists(os.path.join(source_dir, ".git")):
    logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
      source_dir
    ))
    return

  cur_hash = subprocess.getoutput("git rev-parse HEAD")

  path = os.path.join(model_dir, "githash")
  if os.path.exists(path):
    saved_hash = open(path).read()
    if saved_hash != cur_hash:
      logger.warn("git hash values are different. {}(saved) != {}(current)".format(
        saved_hash[:8], cur_hash[:8]))
  else:
    open(path, "w").write(cur_hash)


def get_logger(model_dir, filename="train.log"):
  global logger
  logger = logging.getLogger(os.path.basename(model_dir))
  logger.setLevel(logging.DEBUG)

  formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
  if not os.path.exists(model_dir):
    os.makedirs(model_dir)
  h = logging.FileHandler(os.path.join(model_dir, filename))
  h.setLevel(logging.DEBUG)
  h.setFormatter(formatter)
  logger.addHandler(h)
  return logger


def repeat_expand_2d(content, target_len):
    # content : [h, t]

    src_len = content.shape[-1]
    target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
    temp = torch.arange(src_len+1) * target_len / src_len
    current_pos = 0
    for i in range(target_len):
        if i < temp[current_pos+1]:
            target[:, i] = content[:, current_pos]
        else:
            current_pos += 1
            target[:, i] = content[:, current_pos]

    return target


def mix_model(model_paths,mix_rate,mode):
  mix_rate = torch.FloatTensor(mix_rate)/100
  model_tem = torch.load(model_paths[0])
  models = [torch.load(path)["model"] for path in model_paths]
  if mode == 0:
     mix_rate = F.softmax(mix_rate,dim=0)
  for k in model_tem["model"].keys():
     model_tem["model"][k] = torch.zeros_like(model_tem["model"][k])
     for i,model in enumerate(models):
        model_tem["model"][k] += model[k]*mix_rate[i]
  torch.save(model_tem,os.path.join(os.path.curdir,"output.pth"))
  return os.path.join(os.path.curdir,"output.pth")
  
class HParams():
  def __init__(self, **kwargs):
    for k, v in kwargs.items():
      if type(v) == dict:
        v = HParams(**v)
      self[k] = v

  def keys(self):
    return self.__dict__.keys()

  def items(self):
    return self.__dict__.items()

  def values(self):
    return self.__dict__.values()

  def __len__(self):
    return len(self.__dict__)

  def __getitem__(self, key):
    return getattr(self, key)

  def __setitem__(self, key, value):
    return setattr(self, key, value)

  def __contains__(self, key):
    return key in self.__dict__

  def __repr__(self):
    return self.__dict__.__repr__()