File size: 58,702 Bytes
dfae4e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "C_YSfsRILGPG",
"tags": [],
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "107ed765-da2b-4d6e-e562-43c5573d8566"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"fatal: destination path 'multi_model_phi_3' already exists and is not an empty directory.\n"
]
}
],
"source": [
"!git clone https://github.com/AkashDataScience/multi_model_phi_3"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "CBVAhJBULs5R",
"tags": [],
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "3843bc68-eac9-45aa-a061-b284ae3ddefd"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"/content/multi_model_phi_3\n"
]
}
],
"source": [
"%cd multi_model_phi_3"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "75koL8tzLxKS",
"tags": [],
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "7c5217f4-e70b-4d6d-bda3-65e94878b0e5"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Collecting clip@ git+https://github.com/openai/CLIP.git@dcba3cb2e2827b402d2701e7e1c7d9fed8a20ef1 (from -r requirements.txt (line 2))\n",
" Using cached clip-1.0-py3-none-any.whl\n",
"Requirement already satisfied: bitsandbytes==0.43.3 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 1)) (0.43.3)\n",
"Requirement already satisfied: colorama==0.4.6 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 3)) (0.4.6)\n",
"Requirement already satisfied: datasets==3.0.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 4)) (3.0.0)\n",
"Requirement already satisfied: dill==0.3.8 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 5)) (0.3.8)\n",
"Requirement already satisfied: multiprocess==0.70.16 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 6)) (0.70.16)\n",
"Requirement already satisfied: numpy==1.26.4 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 7)) (1.26.4)\n",
"Requirement already satisfied: pandas==2.2.2 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 8)) (2.2.2)\n",
"Requirement already satisfied: peft==0.12.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 9)) (0.12.0)\n",
"Requirement already satisfied: shtab==1.7.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 10)) (1.7.1)\n",
"Requirement already satisfied: tokenizers==0.19.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 11)) (0.19.1)\n",
"Requirement already satisfied: torch==2.4.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 12)) (2.4.1+cu121)\n",
"Requirement already satisfied: torchvision==0.19.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 13)) (0.19.1+cu121)\n",
"Requirement already satisfied: tqdm==4.66.5 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 14)) (4.66.5)\n",
"Requirement already satisfied: transformers==4.44.2 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 15)) (4.44.2)\n",
"Requirement already satisfied: treelib==1.7.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 16)) (1.7.0)\n",
"Requirement already satisfied: trl==0.10.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 17)) (0.10.1)\n",
"Requirement already satisfied: typing_extensions==4.12.2 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 18)) (4.12.2)\n",
"Requirement already satisfied: tyro==0.8.10 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 19)) (0.8.10)\n",
"Requirement already satisfied: tzdata==2024.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 20)) (2024.1)\n",
"Requirement already satisfied: urllib3==2.2.3 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 21)) (2.2.3)\n",
"Requirement already satisfied: wcwidth==0.2.13 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 22)) (0.2.13)\n",
"Requirement already satisfied: xxhash==3.5.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 23)) (3.5.0)\n",
"Requirement already satisfied: yarl==1.11.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 24)) (1.11.1)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets==3.0.0->-r requirements.txt (line 4)) (3.16.1)\n",
"Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets==3.0.0->-r requirements.txt (line 4)) (16.1.0)\n",
"Requirement already satisfied: requests>=2.32.2 in /usr/local/lib/python3.10/dist-packages (from datasets==3.0.0->-r requirements.txt (line 4)) (2.32.3)\n",
"Requirement already satisfied: fsspec<=2024.6.1,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from fsspec[http]<=2024.6.1,>=2023.1.0->datasets==3.0.0->-r requirements.txt (line 4)) (2024.6.1)\n",
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets==3.0.0->-r requirements.txt (line 4)) (3.10.5)\n",
"Requirement already satisfied: huggingface-hub>=0.22.0 in /usr/local/lib/python3.10/dist-packages (from datasets==3.0.0->-r requirements.txt (line 4)) (0.24.7)\n",
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets==3.0.0->-r requirements.txt (line 4)) (24.1)\n",
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets==3.0.0->-r requirements.txt (line 4)) (6.0.2)\n",
"Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas==2.2.2->-r requirements.txt (line 8)) (2.8.2)\n",
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas==2.2.2->-r requirements.txt (line 8)) (2024.2)\n",
"Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from peft==0.12.0->-r requirements.txt (line 9)) (5.9.5)\n",
"Requirement already satisfied: accelerate>=0.21.0 in /usr/local/lib/python3.10/dist-packages (from peft==0.12.0->-r requirements.txt (line 9)) (0.34.2)\n",
"Requirement already satisfied: safetensors in /usr/local/lib/python3.10/dist-packages (from peft==0.12.0->-r requirements.txt (line 9)) (0.4.5)\n",
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch==2.4.1->-r requirements.txt (line 12)) (1.13.3)\n",
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch==2.4.1->-r requirements.txt (line 12)) (3.3)\n",
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch==2.4.1->-r requirements.txt (line 12)) (3.1.4)\n",
"Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision==0.19.1->-r requirements.txt (line 13)) (10.4.0)\n",
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers==4.44.2->-r requirements.txt (line 15)) (2024.9.11)\n",
"Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from treelib==1.7.0->-r requirements.txt (line 16)) (1.16.0)\n",
"Requirement already satisfied: docstring-parser>=0.16 in /usr/local/lib/python3.10/dist-packages (from tyro==0.8.10->-r requirements.txt (line 19)) (0.16)\n",
"Requirement already satisfied: rich>=11.1.0 in /usr/local/lib/python3.10/dist-packages (from tyro==0.8.10->-r requirements.txt (line 19)) (13.9.1)\n",
"Requirement already satisfied: idna>=2.0 in /usr/local/lib/python3.10/dist-packages (from yarl==1.11.1->-r requirements.txt (line 24)) (3.10)\n",
"Requirement already satisfied: multidict>=4.0 in /usr/local/lib/python3.10/dist-packages (from yarl==1.11.1->-r requirements.txt (line 24)) (6.1.0)\n",
"Requirement already satisfied: ftfy in /usr/local/lib/python3.10/dist-packages (from clip@ git+https://github.com/openai/CLIP.git@dcba3cb2e2827b402d2701e7e1c7d9fed8a20ef1->-r requirements.txt (line 2)) (6.2.3)\n",
"Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==3.0.0->-r requirements.txt (line 4)) (2.4.3)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==3.0.0->-r requirements.txt (line 4)) (1.3.1)\n",
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==3.0.0->-r requirements.txt (line 4)) (24.2.0)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==3.0.0->-r requirements.txt (line 4)) (1.4.1)\n",
"Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==3.0.0->-r requirements.txt (line 4)) (4.0.3)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets==3.0.0->-r requirements.txt (line 4)) (3.3.2)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets==3.0.0->-r requirements.txt (line 4)) (2024.8.30)\n",
"Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich>=11.1.0->tyro==0.8.10->-r requirements.txt (line 19)) (3.0.0)\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich>=11.1.0->tyro==0.8.10->-r requirements.txt (line 19)) (2.18.0)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch==2.4.1->-r requirements.txt (line 12)) (2.1.5)\n",
"Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy->torch==2.4.1->-r requirements.txt (line 12)) (1.3.0)\n",
"Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich>=11.1.0->tyro==0.8.10->-r requirements.txt (line 19)) (0.1.2)\n"
]
}
],
"source": [
"!pip install -r requirements.txt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QauI2fQjWWTg",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "fa8e0f93-d988-4108-93f7-15a7281a1b21"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"/content/multi_model_phi_3/image_finetuning/finetuning\n"
]
}
],
"source": [
"%cd image_finetuning/finetuning"
]
},
{
"cell_type": "code",
"source": [
"!wget -c https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_instruct_150k.json"
],
"metadata": {
"id": "koXJ8mCciYYn",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "ad30c91c-59f7-48c3-c6c9-7cd824dbdaaf"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"--2024-10-10 15:16:24-- https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_instruct_150k.json\n",
"Resolving huggingface.co (huggingface.co)... 3.165.160.12, 3.165.160.59, 3.165.160.11, ...\n",
"Connecting to huggingface.co (huggingface.co)|3.165.160.12|:443... connected.\n",
"HTTP request sent, awaiting response... 302 Found\n",
"Location: https://cdn-lfs.hf.co/repos/4d/41/4d41ea1e2709f0e68e9e361e4218192b9620c5a3f2cb8055bc625942b6cd3039/6b68bc5ca2bfd8a71119af0e8454929668ccda6a334955ccc95d114fc8d082fa?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27llava_instruct_150k.json%3B+filename%3D%22llava_instruct_150k.json%22%3B&response-content-type=application%2Fjson&Expires=1728832584&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcyODgzMjU4NH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5oZi5jby9yZXBvcy80ZC80MS80ZDQxZWExZTI3MDlmMGU2OGU5ZTM2MWU0MjE4MTkyYjk2MjBjNWEzZjJjYjgwNTViYzYyNTk0MmI2Y2QzMDM5LzZiNjhiYzVjYTJiZmQ4YTcxMTE5YWYwZTg0NTQ5Mjk2NjhjY2RhNmEzMzQ5NTVjY2M5NWQxMTRmYzhkMDgyZmE%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qJnJlc3BvbnNlLWNvbnRlbnQtdHlwZT0qIn1dfQ__&Signature=hSNSHtz4qcHoAKL%7EBQFjBgq04GmcG2H-ajjYJrixr%7EHufuWwWQMy5AcuLKkDmolFgE8M82AnKQ08idN5ZvzJcgcoyt4QLWmrwLFRMnkORPQNFAoZk9FKvkthxfpdIdLtTZoPb6BqMg5l4SeggvOSC5q8%7EtfC5ASQMw%7ExqIqSGPTo9yIb-CfLXyE3Ceef8E7MIfW8s796ZpgilPx1zhl4cx8s2DyieL84KckvhYxf2Lc5MRBZnUdl0sUuvHBlC7SCr5lB2v-W1veTiqwur9fSpQ4uawD1BApft-zlSA84DnjssFWqhBa-T49X5-P2fGLmwAPcyVlUT17%7EvhHc-reAJg__&Key-Pair-Id=K3RPWS32NSSJCE [following]\n",
"--2024-10-10 15:16:25-- https://cdn-lfs.hf.co/repos/4d/41/4d41ea1e2709f0e68e9e361e4218192b9620c5a3f2cb8055bc625942b6cd3039/6b68bc5ca2bfd8a71119af0e8454929668ccda6a334955ccc95d114fc8d082fa?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27llava_instruct_150k.json%3B+filename%3D%22llava_instruct_150k.json%22%3B&response-content-type=application%2Fjson&Expires=1728832584&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcyODgzMjU4NH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5oZi5jby9yZXBvcy80ZC80MS80ZDQxZWExZTI3MDlmMGU2OGU5ZTM2MWU0MjE4MTkyYjk2MjBjNWEzZjJjYjgwNTViYzYyNTk0MmI2Y2QzMDM5LzZiNjhiYzVjYTJiZmQ4YTcxMTE5YWYwZTg0NTQ5Mjk2NjhjY2RhNmEzMzQ5NTVjY2M5NWQxMTRmYzhkMDgyZmE%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qJnJlc3BvbnNlLWNvbnRlbnQtdHlwZT0qIn1dfQ__&Signature=hSNSHtz4qcHoAKL%7EBQFjBgq04GmcG2H-ajjYJrixr%7EHufuWwWQMy5AcuLKkDmolFgE8M82AnKQ08idN5ZvzJcgcoyt4QLWmrwLFRMnkORPQNFAoZk9FKvkthxfpdIdLtTZoPb6BqMg5l4SeggvOSC5q8%7EtfC5ASQMw%7ExqIqSGPTo9yIb-CfLXyE3Ceef8E7MIfW8s796ZpgilPx1zhl4cx8s2DyieL84KckvhYxf2Lc5MRBZnUdl0sUuvHBlC7SCr5lB2v-W1veTiqwur9fSpQ4uawD1BApft-zlSA84DnjssFWqhBa-T49X5-P2fGLmwAPcyVlUT17%7EvhHc-reAJg__&Key-Pair-Id=K3RPWS32NSSJCE\n",
"Resolving cdn-lfs.hf.co (cdn-lfs.hf.co)... 18.172.170.21, 18.172.170.29, 18.172.170.5, ...\n",
"Connecting to cdn-lfs.hf.co (cdn-lfs.hf.co)|18.172.170.21|:443... connected.\n",
"HTTP request sent, awaiting response... 416 Requested Range Not Satisfiable\n",
"\n",
" The file is already fully retrieved; nothing to do.\n",
"\n"
]
}
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "B325mAHNtJCB",
"tags": [],
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000,
"referenced_widgets": [
"f8108b8c120d4f49ac2b0fa38d6213c3",
"868fd8ed1fb5432ab6d6761b4e4ce17d",
"f75b8c1cb15a4dc9871b28a286dd3b82",
"a08098910db44feabc38e65bf4a55379",
"13be5acd97ab44babec61cedcf5b2a3a",
"239ab0a871684811ae7a3e16daa8991a",
"4ca7774f57454d74bd1b7c9445030038",
"557ecfce51574b8db9236bdc8d0bd555",
"bc0e09ab397f42879b8c874eb10e6a2b",
"8dec270eb8c649649f6b95ddde159a0f",
"f9d65533a8fd4310b1466713c22d8255"
]
},
"outputId": "1a2eb33f-62b2-4f96-d3f5-365869a0aa0b"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"WARNING:__main__:Process rank: 0, device: cuda:0, n_gpu: 1 distributed training: True, 16-bits training: False\n",
"INFO:__main__:Training/evaluation parameters TrainingArguments(\n",
"_n_gpu=1,\n",
"accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},\n",
"adafactor=False,\n",
"adam_beta1=0.9,\n",
"adam_beta2=0.999,\n",
"adam_epsilon=1e-08,\n",
"auto_find_batch_size=False,\n",
"batch_eval_metrics=False,\n",
"bf16=True,\n",
"bf16_full_eval=False,\n",
"data_seed=None,\n",
"dataloader_drop_last=False,\n",
"dataloader_num_workers=0,\n",
"dataloader_persistent_workers=False,\n",
"dataloader_pin_memory=True,\n",
"dataloader_prefetch_factor=None,\n",
"ddp_backend=None,\n",
"ddp_broadcast_buffers=None,\n",
"ddp_bucket_cap_mb=None,\n",
"ddp_find_unused_parameters=None,\n",
"ddp_timeout=1800,\n",
"debug=[],\n",
"deepspeed=None,\n",
"disable_tqdm=False,\n",
"dispatch_batches=None,\n",
"do_eval=False,\n",
"do_predict=False,\n",
"do_train=False,\n",
"eval_accumulation_steps=None,\n",
"eval_delay=0,\n",
"eval_do_concat_batches=True,\n",
"eval_on_start=False,\n",
"eval_steps=None,\n",
"eval_strategy=no,\n",
"eval_use_gather_object=False,\n",
"evaluation_strategy=None,\n",
"fp16=False,\n",
"fp16_backend=auto,\n",
"fp16_full_eval=False,\n",
"fp16_opt_level=O1,\n",
"fsdp=[],\n",
"fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},\n",
"fsdp_min_num_params=0,\n",
"fsdp_transformer_layer_cls_to_wrap=None,\n",
"full_determinism=False,\n",
"gradient_accumulation_steps=1,\n",
"gradient_checkpointing=True,\n",
"gradient_checkpointing_kwargs={'use_reentrant': False},\n",
"greater_is_better=None,\n",
"group_by_length=False,\n",
"half_precision_backend=auto,\n",
"hub_always_push=False,\n",
"hub_model_id=None,\n",
"hub_private_repo=False,\n",
"hub_strategy=every_save,\n",
"hub_token=<HUB_TOKEN>,\n",
"ignore_data_skip=False,\n",
"include_inputs_for_metrics=False,\n",
"include_num_input_tokens_seen=False,\n",
"include_tokens_per_second=False,\n",
"jit_mode_eval=False,\n",
"label_names=None,\n",
"label_smoothing_factor=0.0,\n",
"learning_rate=5e-06,\n",
"length_column_name=length,\n",
"load_best_model_at_end=False,\n",
"local_rank=0,\n",
"log_level=info,\n",
"log_level_replica=warning,\n",
"log_on_each_node=True,\n",
"logging_dir=./checkpoint_dir/runs/Oct10_15-16-37_33ba61f47fc9,\n",
"logging_first_step=False,\n",
"logging_nan_inf_filter=True,\n",
"logging_steps=20,\n",
"logging_strategy=steps,\n",
"lr_scheduler_kwargs={},\n",
"lr_scheduler_type=cosine,\n",
"max_grad_norm=1.0,\n",
"max_steps=60,\n",
"metric_for_best_model=None,\n",
"mp_parameters=,\n",
"neftune_noise_alpha=None,\n",
"no_cuda=False,\n",
"num_train_epochs=1,\n",
"optim=adamw_torch,\n",
"optim_args=None,\n",
"optim_target_modules=None,\n",
"output_dir=./checkpoint_dir,\n",
"overwrite_output_dir=True,\n",
"past_index=-1,\n",
"per_device_eval_batch_size=4,\n",
"per_device_train_batch_size=4,\n",
"prediction_loss_only=False,\n",
"push_to_hub=False,\n",
"push_to_hub_model_id=None,\n",
"push_to_hub_organization=None,\n",
"push_to_hub_token=<PUSH_TO_HUB_TOKEN>,\n",
"ray_scope=last,\n",
"remove_unused_columns=False,\n",
"report_to=['tensorboard'],\n",
"restore_callback_states_from_checkpoint=False,\n",
"resume_from_checkpoint=None,\n",
"run_name=./checkpoint_dir,\n",
"save_on_each_node=False,\n",
"save_only_model=False,\n",
"save_safetensors=True,\n",
"save_steps=60,\n",
"save_strategy=steps,\n",
"save_total_limit=1,\n",
"seed=0,\n",
"skip_memory_metrics=True,\n",
"split_batches=None,\n",
"tf32=None,\n",
"torch_compile=False,\n",
"torch_compile_backend=None,\n",
"torch_compile_mode=None,\n",
"torch_empty_cache_steps=None,\n",
"torchdynamo=None,\n",
"tpu_metrics_debug=False,\n",
"tpu_num_cores=None,\n",
"use_cpu=False,\n",
"use_ipex=False,\n",
"use_legacy_prediction_loop=False,\n",
"use_mps_device=False,\n",
"warmup_ratio=0.2,\n",
"warmup_steps=0,\n",
"weight_decay=0.0,\n",
")\n",
"INFO:__main__:PEFT parameters LoraConfig(peft_type=<PeftType.LORA: 'LORA'>, auto_mapping=None, base_model_name_or_path=None, revision=None, task_type='CAUSAL_LM', inference_mode=False, r=16, target_modules={'qkv_proj', 'o_proj'}, lora_alpha=32, lora_dropout=0.05, fan_in_fan_out=False, bias='none', use_rslora=False, modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None, rank_pattern={}, alpha_pattern={}, megatron_config=None, megatron_core='megatron.core', loftq_config={}, use_dora=False, layer_replication=None, runtime_config=LoraRuntimeConfig(ephemeral_gpu_offload=False))\n",
"/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:89: UserWarning: \n",
"The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
"To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
"You will be able to reuse this secret in all of your notebooks.\n",
"Please note that authentication is recommended but still optional to access public models or datasets.\n",
" warnings.warn(\n",
"[INFO|configuration_utils.py:733] 2024-10-10 15:16:39,682 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--microsoft--phi-3-mini-4k-instruct/snapshots/0a67737cc96d2554230f90338b163bc6380a2a85/config.json\n",
"[INFO|configuration_utils.py:733] 2024-10-10 15:16:39,856 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--microsoft--phi-3-mini-4k-instruct/snapshots/0a67737cc96d2554230f90338b163bc6380a2a85/config.json\n",
"[INFO|configuration_utils.py:800] 2024-10-10 15:16:39,858 >> Model config Phi3Config {\n",
" \"_name_or_path\": \"microsoft/phi-3-mini-4k-instruct\",\n",
" \"architectures\": [\n",
" \"Phi3ForCausalLM\"\n",
" ],\n",
" \"attention_bias\": false,\n",
" \"attention_dropout\": 0.0,\n",
" \"auto_map\": {\n",
" \"AutoConfig\": \"microsoft/phi-3-mini-4k-instruct--configuration_phi3.Phi3Config\",\n",
" \"AutoModelForCausalLM\": \"microsoft/phi-3-mini-4k-instruct--modeling_phi3.Phi3ForCausalLM\"\n",
" },\n",
" \"bos_token_id\": 1,\n",
" \"embd_pdrop\": 0.0,\n",
" \"eos_token_id\": 32000,\n",
" \"hidden_act\": \"silu\",\n",
" \"hidden_size\": 3072,\n",
" \"initializer_range\": 0.02,\n",
" \"intermediate_size\": 8192,\n",
" \"max_position_embeddings\": 4096,\n",
" \"model_type\": \"phi3\",\n",
" \"num_attention_heads\": 32,\n",
" \"num_hidden_layers\": 32,\n",
" \"num_key_value_heads\": 32,\n",
" \"original_max_position_embeddings\": 4096,\n",
" \"pad_token_id\": 32000,\n",
" \"resid_pdrop\": 0.0,\n",
" \"rms_norm_eps\": 1e-05,\n",
" \"rope_scaling\": null,\n",
" \"rope_theta\": 10000.0,\n",
" \"sliding_window\": 2047,\n",
" \"tie_word_embeddings\": false,\n",
" \"torch_dtype\": \"bfloat16\",\n",
" \"transformers_version\": \"4.44.2\",\n",
" \"use_cache\": false,\n",
" \"vocab_size\": 32064\n",
"}\n",
"\n",
"WARNING:transformers_modules.microsoft.phi-3-mini-4k-instruct.0a67737cc96d2554230f90338b163bc6380a2a85.modeling_phi3:`flash-attention` package not found, consider installing for better performance: No module named 'flash_attn'.\n",
"WARNING:transformers_modules.microsoft.phi-3-mini-4k-instruct.0a67737cc96d2554230f90338b163bc6380a2a85.modeling_phi3:Current `flash-attention` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`.\n",
"[INFO|modeling_utils.py:3678] 2024-10-10 15:16:40,221 >> loading weights file model.safetensors from cache at /root/.cache/huggingface/hub/models--microsoft--phi-3-mini-4k-instruct/snapshots/0a67737cc96d2554230f90338b163bc6380a2a85/model.safetensors.index.json\n",
"[INFO|modeling_utils.py:1606] 2024-10-10 15:16:40,225 >> Instantiating Phi3ForCausalLM model under default dtype torch.bfloat16.\n",
"[INFO|configuration_utils.py:1038] 2024-10-10 15:16:40,228 >> Generate config GenerationConfig {\n",
" \"bos_token_id\": 1,\n",
" \"eos_token_id\": 32000,\n",
" \"pad_token_id\": 32000,\n",
" \"use_cache\": false\n",
"}\n",
"\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "f8108b8c120d4f49ac2b0fa38d6213c3"
}
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"[INFO|modeling_utils.py:4507] 2024-10-10 15:17:11,062 >> All model checkpoint weights were used when initializing Phi3ForCausalLM.\n",
"\n",
"[INFO|modeling_utils.py:4515] 2024-10-10 15:17:11,070 >> All the weights of Phi3ForCausalLM were initialized from the model checkpoint at microsoft/phi-3-mini-4k-instruct.\n",
"If your task is similar to the task the model of the checkpoint was trained on, you can already use Phi3ForCausalLM for predictions without further training.\n",
"[INFO|configuration_utils.py:993] 2024-10-10 15:17:11,251 >> loading configuration file generation_config.json from cache at /root/.cache/huggingface/hub/models--microsoft--phi-3-mini-4k-instruct/snapshots/0a67737cc96d2554230f90338b163bc6380a2a85/generation_config.json\n",
"[INFO|configuration_utils.py:1038] 2024-10-10 15:17:11,253 >> Generate config GenerationConfig {\n",
" \"bos_token_id\": 1,\n",
" \"eos_token_id\": [\n",
" 32000,\n",
" 32001,\n",
" 32007\n",
" ],\n",
" \"pad_token_id\": 32000\n",
"}\n",
"\n",
"[INFO|tokenization_utils_base.py:2269] 2024-10-10 15:17:11,768 >> loading file tokenizer.model from cache at /root/.cache/huggingface/hub/models--microsoft--phi-3-mini-4k-instruct/snapshots/0a67737cc96d2554230f90338b163bc6380a2a85/tokenizer.model\n",
"[INFO|tokenization_utils_base.py:2269] 2024-10-10 15:17:11,769 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--microsoft--phi-3-mini-4k-instruct/snapshots/0a67737cc96d2554230f90338b163bc6380a2a85/tokenizer.json\n",
"[INFO|tokenization_utils_base.py:2269] 2024-10-10 15:17:11,771 >> loading file added_tokens.json from cache at /root/.cache/huggingface/hub/models--microsoft--phi-3-mini-4k-instruct/snapshots/0a67737cc96d2554230f90338b163bc6380a2a85/added_tokens.json\n",
"[INFO|tokenization_utils_base.py:2269] 2024-10-10 15:17:11,772 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--microsoft--phi-3-mini-4k-instruct/snapshots/0a67737cc96d2554230f90338b163bc6380a2a85/special_tokens_map.json\n",
"[INFO|tokenization_utils_base.py:2269] 2024-10-10 15:17:11,775 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--microsoft--phi-3-mini-4k-instruct/snapshots/0a67737cc96d2554230f90338b163bc6380a2a85/tokenizer_config.json\n",
"[INFO|tokenization_utils_base.py:2513] 2024-10-10 15:17:11,857 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n",
"/content/multi_model_phi_3/image_finetuning/finetuning/model.py:39: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
" self.projections.load_state_dict(torch.load(projection_path, map_location=device), strict=False)\n",
"Using custom data configuration default-559b28e319de0343\n",
"INFO:datasets.builder:Using custom data configuration default-559b28e319de0343\n",
"Loading Dataset Infos from /usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/json\n",
"INFO:datasets.info:Loading Dataset Infos from /usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/json\n",
"Overwrite dataset info from restored data version if exists.\n",
"INFO:datasets.builder:Overwrite dataset info from restored data version if exists.\n",
"Loading Dataset info from /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092\n",
"INFO:datasets.info:Loading Dataset info from /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092\n",
"Found cached dataset json (/root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092)\n",
"INFO:datasets.builder:Found cached dataset json (/root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092)\n",
"Loading Dataset info from /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092\n",
"INFO:datasets.info:Loading Dataset info from /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092\n",
"Process #0 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00000_of_00010.arrow\n",
"INFO:datasets.arrow_dataset:Process #0 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00000_of_00010.arrow\n",
"Process #1 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00001_of_00010.arrow\n",
"INFO:datasets.arrow_dataset:Process #1 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00001_of_00010.arrow\n",
"Process #2 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00002_of_00010.arrow\n",
"INFO:datasets.arrow_dataset:Process #2 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00002_of_00010.arrow\n",
"Process #3 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00003_of_00010.arrow\n",
"INFO:datasets.arrow_dataset:Process #3 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00003_of_00010.arrow\n",
"Process #4 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00004_of_00010.arrow\n",
"INFO:datasets.arrow_dataset:Process #4 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00004_of_00010.arrow\n",
"Process #5 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00005_of_00010.arrow\n",
"INFO:datasets.arrow_dataset:Process #5 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00005_of_00010.arrow\n",
"Process #6 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00006_of_00010.arrow\n",
"INFO:datasets.arrow_dataset:Process #6 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00006_of_00010.arrow\n",
"Process #7 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00007_of_00010.arrow\n",
"INFO:datasets.arrow_dataset:Process #7 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00007_of_00010.arrow\n",
"Process #8 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00008_of_00010.arrow\n",
"INFO:datasets.arrow_dataset:Process #8 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00008_of_00010.arrow\n",
"Process #9 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00009_of_00010.arrow\n",
"INFO:datasets.arrow_dataset:Process #9 will write at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_00009_of_00010.arrow\n",
"Loading cached processed dataset at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_*_of_00010.arrow\n",
"INFO:datasets.arrow_dataset:Loading cached processed dataset at /root/.cache/huggingface/datasets/json/default-559b28e319de0343/0.0.0/f4e89e8750d5d5ffbef2c078bf0ddfedef29dc2faff52a6255cf513c05eb1092/cache-6111b26d09859c8f_*_of_00010.arrow\n",
"Concatenating 10 shards\n",
"INFO:datasets.arrow_dataset:Concatenating 10 shards\n",
"/content/multi_model_phi_3/image_finetuning/finetuning/dataset.py:10: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
" self.image_embeddings = torch.load('clip_embeddings.pt')\n",
"[WARNING|trainer.py:598] 2024-10-10 15:17:18,521 >> max_steps is given, it will override any value given in num_train_epochs\n",
"[INFO|trainer.py:648] 2024-10-10 15:17:18,522 >> Using auto half precision backend\n",
"[INFO|trainer.py:2134] 2024-10-10 15:17:19,563 >> ***** Running training *****\n",
"[INFO|trainer.py:2135] 2024-10-10 15:17:19,565 >> Num examples = 141,941\n",
"[INFO|trainer.py:2136] 2024-10-10 15:17:19,570 >> Num Epochs = 1\n",
"[INFO|trainer.py:2137] 2024-10-10 15:17:19,571 >> Instantaneous batch size per device = 4\n",
"[INFO|trainer.py:2140] 2024-10-10 15:17:19,573 >> Total train batch size (w. parallel, distributed & accumulation) = 4\n",
"[INFO|trainer.py:2141] 2024-10-10 15:17:19,574 >> Gradient Accumulation steps = 1\n",
"[INFO|trainer.py:2142] 2024-10-10 15:17:19,576 >> Total optimization steps = 60\n",
"[INFO|trainer.py:2143] 2024-10-10 15:17:19,580 >> Number of trainable parameters = 124,302,336\n",
"WARNING:transformers_modules.microsoft.phi-3-mini-4k-instruct.0a67737cc96d2554230f90338b163bc6380a2a85.modeling_phi3:You are not running the flash-attention implementation, expect numerical differences.\n",
"/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:1399: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.\n",
" with device_autocast_ctx, torch.cpu.amp.autocast(**cpu_autocast_kwargs), recompute_context: # type: ignore[attr-defined]\n",
"[WARNING|modeling_utils.py:1264] 2024-10-10 15:17:29,290 >> Could not estimate the number of tokens of the input, floating-point operations will not be computed\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='60' max='60' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [60/60 15:44, Epoch 0/1]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Step</th>\n",
" <th>Training Loss</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>20</td>\n",
" <td>9.531900</td>\n",
" </tr>\n",
" <tr>\n",
" <td>40</td>\n",
" <td>10.267400</td>\n",
" </tr>\n",
" <tr>\n",
" <td>60</td>\n",
" <td>9.545700</td>\n",
" </tr>\n",
" </tbody>\n",
"</table><p>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"[INFO|trainer.py:3503] 2024-10-10 15:32:51,845 >> Saving model checkpoint to ./checkpoint_dir/checkpoint-60\n",
"[INFO|configuration_utils.py:472] 2024-10-10 15:32:51,849 >> Configuration saved in ./checkpoint_dir/checkpoint-60/config.json\n",
"[INFO|modeling_utils.py:2799] 2024-10-10 15:33:11,817 >> Model weights saved in ./checkpoint_dir/checkpoint-60/model.safetensors\n",
"[INFO|tokenization_utils_base.py:2684] 2024-10-10 15:33:11,827 >> tokenizer config file saved in ./checkpoint_dir/checkpoint-60/tokenizer_config.json\n",
"[INFO|tokenization_utils_base.py:2693] 2024-10-10 15:33:11,830 >> Special tokens file saved in ./checkpoint_dir/checkpoint-60/special_tokens_map.json\n",
"[INFO|trainer.py:2394] 2024-10-10 15:33:13,911 >> \n",
"\n",
"Training completed. Do not forget to share your model on huggingface.co/models =)\n",
"\n",
"\n",
"[INFO|trainer.py:3819] 2024-10-10 15:33:13,928 >> \n",
"***** Running Evaluation *****\n",
"[INFO|trainer.py:3821] 2024-10-10 15:33:13,931 >> Num examples = 15771\n",
"[INFO|trainer.py:3824] 2024-10-10 15:33:13,933 >> Batch size = 4\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"***** train metrics *****\n",
" epoch = 0.0017\n",
" total_flos = 0GF\n",
" train_loss = 9.7817\n",
" train_runtime = 0:15:54.33\n",
" train_samples_per_second = 0.251\n",
" train_steps_per_second = 0.063\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='1158' max='3943' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [1158/3943 1:48:54 < 4:22:10, 0.18 it/s]\n",
" </div>\n",
" "
]
},
"metadata": {}
}
],
"source": [
"%run finetune.py"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"f8108b8c120d4f49ac2b0fa38d6213c3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_868fd8ed1fb5432ab6d6761b4e4ce17d",
"IPY_MODEL_f75b8c1cb15a4dc9871b28a286dd3b82",
"IPY_MODEL_a08098910db44feabc38e65bf4a55379"
],
"layout": "IPY_MODEL_13be5acd97ab44babec61cedcf5b2a3a"
}
},
"868fd8ed1fb5432ab6d6761b4e4ce17d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_239ab0a871684811ae7a3e16daa8991a",
"placeholder": "",
"style": "IPY_MODEL_4ca7774f57454d74bd1b7c9445030038",
"value": "Loading checkpoint shards: 100%"
}
},
"f75b8c1cb15a4dc9871b28a286dd3b82": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_557ecfce51574b8db9236bdc8d0bd555",
"max": 2,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_bc0e09ab397f42879b8c874eb10e6a2b",
"value": 2
}
},
"a08098910db44feabc38e65bf4a55379": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_8dec270eb8c649649f6b95ddde159a0f",
"placeholder": "",
"style": "IPY_MODEL_f9d65533a8fd4310b1466713c22d8255",
"value": " 2/2 [00:30<00:00, 14.75s/it]"
}
},
"13be5acd97ab44babec61cedcf5b2a3a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"239ab0a871684811ae7a3e16daa8991a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4ca7774f57454d74bd1b7c9445030038": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"557ecfce51574b8db9236bdc8d0bd555": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"bc0e09ab397f42879b8c874eb10e6a2b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"8dec270eb8c649649f6b95ddde159a0f": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f9d65533a8fd4310b1466713c22d8255": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
} |