Spaces:
Sleeping
Sleeping
File size: 17,741 Bytes
1f6f52d 8a4d72c 1f6f52d 66c096b 8a4d72c 45d3ff2 8a4d72c 1f6f52d 61746ab 2c28e54 61746ab 8a4d72c 1f6f52d 61746ab 1f6f52d 8a4d72c 1f6f52d 61746ab 3da7a6d 61746ab ecfb2f8 1f6f52d 8a4d72c 1f6f52d 8a4d72c 1f6f52d 8a4d72c 1f6f52d 61746ab a568f96 ecfb2f8 61746ab a568f96 ecfb2f8 61746ab 9d8c79c a568f96 61746ab a568f96 9d8c79c 8a4d72c 61746ab 45d3ff2 8a4d72c 3da7a6d 8a4d72c a568f96 8a4d72c a568f96 8a4d72c 45d3ff2 8c456c5 8a4d72c 61746ab 8a4d72c 61746ab 8a4d72c 61746ab 8a4d72c ecfb2f8 8a4d72c 6eec350 8a4d72c 61746ab 8a4d72c ecfb2f8 61746ab 8a4d72c 61746ab 8a4d72c 61746ab 6eec350 61746ab 6eec350 61746ab 6eec350 45d3ff2 8a4d72c 61746ab 9d8c79c 6eec350 9d8c79c 8a4d72c 61746ab 9d8c79c 8a4d72c 3da7a6d 61746ab 8a4d72c a568f96 8a4d72c 239672f 61746ab 8a4d72c 61746ab 6eec350 9d8c79c 61746ab 6eec350 61746ab 45d3ff2 9d8c79c 8a4d72c 45d3ff2 61746ab 45d3ff2 03f512c 45d3ff2 8a4d72c 3da7a6d 8a4d72c 1f6f52d 61746ab 8a4d72c 61746ab 8a4d72c 61746ab 8a4d72c 61746ab 8a4d72c 9d8c79c 8a4d72c 45d3ff2 8a4d72c 45d3ff2 66c096b 8a4d72c 1f6f52d 8a4d72c 2c28e54 8a4d72c 45d3ff2 2c28e54 8a4d72c 45d3ff2 1f6f52d 61746ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import cv2
import numpy as np
import torch
from ultralytics import YOLO
import gradio as gr
from scipy.interpolate import interp1d
import plotly.graph_objects as go
import uuid
import os
from scipy.ndimage import uniform_filter1d
# Load the trained YOLOv8n model with optimizations
model = YOLO("best.pt")
model.to('cuda' if torch.cuda.is_available() else 'cpu') # Use GPU if available
# Constants for LBW decision and video processing
STUMPS_WIDTH = 0.2286 # meters (width of stumps)
BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
FRAME_RATE = 20 # Default frame rate, updated dynamically
SLOW_MOTION_FACTOR = 1.5 # Faster replay (e.g., 30 / 1.5 = 20 FPS)
CONF_THRESHOLD = 0.15 # Lowered for better detection
IMPACT_ZONE_Y = 0.9 # Adjusted to 90% of frame height for impact zone
PITCH_LENGTH = 20.12 # meters (standard cricket pitch length)
STUMPS_HEIGHT = 0.71 # meters (stumps height)
CAMERA_HEIGHT = 2.0 # meters (assumed camera height)
CAMERA_DISTANCE = 10.0 # meters (assumed camera distance from pitch)
MAX_POSITION_JUMP = 250 # Increased to include more detections
def process_video(video_path):
if not os.path.exists(video_path):
return [], [], [], "Error: Video file not found"
cap = cv2.VideoCapture(video_path)
# Get native video resolution and frame rate
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
FRAME_RATE = cap.get(cv2.CAP_PROP_FPS) or 20 # Use actual frame rate or default
# Adjust image size to be multiple of 32 for YOLO
stride = 32
img_width = ((frame_width + stride - 1) // stride) * stride
img_height = ((frame_height + stride - 1) // stride) * stride
frames = []
ball_positions = []
detection_frames = []
debug_log = []
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
frames.append(frame.copy())
# Enhance frame contrast and sharpness
frame = cv2.convertScaleAbs(frame, alpha=1.5, beta=20)
kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
frame = cv2.filter2D(frame, -1, kernel)
results = model.predict(frame, conf=CONF_THRESHOLD, imgsz=(img_height, img_width), iou=0.5, max_det=5)
detections = sum(1 for detection in results[0].boxes if detection.cls == 0)
if detections >= 1: # Process frames with at least one ball detection
max_conf = 0
best_detection = None
conf_scores = []
for detection in results[0].boxes:
if detection.cls == 0: # Class 0 is the ball
conf = detection.conf.cpu().numpy()[0]
conf_scores.append(conf)
if conf > max_conf:
max_conf = conf
best_detection = detection
if best_detection:
x1, y1, x2, y2 = best_detection.xyxy[0].cpu().numpy()
# Scale coordinates back to original frame size
x1 = x1 * frame_width / img_width
x2 = x2 * frame_width / img_width
y1 = y1 * frame_height / img_height
y2 = y2 * frame_height / img_height
ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
detection_frames.append(frame_count - 1)
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
debug_log.append(f"Frame {frame_count}: {detections} ball detections, selected confidence={max_conf:.3f}, all confidences={conf_scores}")
else:
debug_log.append(f"Frame {frame_count}: {detections} ball detections")
frames[-1] = frame
# Save debug frame
cv2.imwrite(f"debug_frame_{frame_count}.jpg", frame)
cap.release()
if not ball_positions:
debug_log.append("No frames with ball detection")
else:
debug_log.append(f"Total frames with ball detection: {len(ball_positions)}")
debug_log.append(f"Video resolution: {frame_width}x{frame_height}")
debug_log.append(f"Video frame rate: {FRAME_RATE}")
return frames, ball_positions, detection_frames, "\n".join(debug_log)
def pixel_to_3d(x, y, frame_height, frame_width):
"""Convert 2D pixel coordinates to 3D real-world coordinates."""
x_norm = x / frame_width
y_norm = y / frame_height
x_3d = (x_norm - 0.5) * 3.0 # Center x at 0 (middle of pitch)
y_3d = y_norm * PITCH_LENGTH
z_3d = (1 - y_norm) * BALL_DIAMETER * 5 # Scale to approximate ball bounce height
return x_3d, y_3d, z_3d
def estimate_trajectory(ball_positions, frames, detection_frames):
if len(ball_positions) < 2:
return None, None, None, None, None, None, None, None, None, "Error: Fewer than 2 frames with one ball detection"
frame_height, frame_width = frames[0].shape[:2]
debug_log = []
# Filter out sudden changes in position for continuous trajectory
filtered_positions = [ball_positions[0]]
filtered_frames = [detection_frames[0]]
for i in range(1, len(ball_positions)):
prev_pos = filtered_positions[-1]
curr_pos = ball_positions[i]
distance = np.sqrt((curr_pos[0] - prev_pos[0])**2 + (curr_pos[1] - prev_pos[1])**2)
if distance <= MAX_POSITION_JUMP:
filtered_positions.append(curr_pos)
filtered_frames.append(detection_frames[i])
else:
debug_log.append(f"Filtered out detection at frame {detection_frames[i] + 1}: large jump ({distance:.1f} pixels)")
continue
if len(filtered_positions) < 2:
return None, None, None, None, None, None, None, None, None, "Error: Fewer than 2 valid ball detections after filtering"
x_coords = [pos[0] for pos in filtered_positions]
y_coords = [pos[1] for pos in filtered_positions]
times = np.array(filtered_frames) / FRAME_RATE
# Smooth coordinates to avoid sudden jumps
x_coords = uniform_filter1d(x_coords, size=3)
y_coords = uniform_filter1d(y_coords, size=3)
# Convert to 3D for visualization
detections_3d = [pixel_to_3d(x, y, frame_height, frame_width) for x, y in zip(x_coords, y_coords)]
# Pitch point: Detection with lowest y-coordinate (near bowler's end)
pitch_idx = min(range(len(filtered_positions)), key=lambda i: y_coords[i])
pitch_point = (x_coords[pitch_idx], y_coords[pitch_idx])
pitch_frame = filtered_frames[pitch_idx]
# Impact point: Detection with highest y-coordinate after pitch point (near stumps)
post_pitch_indices = [i for i in range(len(filtered_positions)) if filtered_frames[i] > pitch_frame]
if not post_pitch_indices:
return None, None, None, None, None, None, None, None, None, "Error: No detections after pitch point"
impact_idx = max(post_pitch_indices, key=lambda i: y_coords[i])
impact_point = (x_coords[impact_idx], y_coords[impact_idx])
impact_frame = filtered_frames[impact_idx]
try:
# Use linear interpolation for stable trajectory
fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
fy = interp1d(times, y_coords, kind='linear', fill_value="extrapolate")
except Exception as e:
return None, None, None, None, None, None, None, None, None, f"Error in trajectory interpolation: {str(e)}"
# Generate dense points for all frames between first and last detection
total_frames = max(detection_frames) - min(detection_frames) + 1
t_full = np.linspace(min(detection_frames) / FRAME_RATE, max(detection_frames) / FRAME_RATE, int(total_frames * SLOW_MOTION_FACTOR))
x_full = fx(t_full)
y_full = fy(t_full)
trajectory_2d = list(zip(x_full, y_full))
trajectory_3d = [pixel_to_3d(x, y, frame_height, frame_width) for x, y in trajectory_2d]
pitch_point_3d = pixel_to_3d(pitch_point[0], pitch_point[1], frame_height, frame_width)
impact_point_3d = pixel_to_3d(impact_point[0], impact_point[1], frame_height, frame_width)
# Debug trajectory and points
debug_log.extend([
f"Trajectory estimated successfully",
f"Pitch point at frame {pitch_frame + 1}: ({pitch_point[0]:.1f}, {pitch_point[1]:.1f}), 3D: {pitch_point_3d}",
f"Impact point at frame {impact_frame + 1}: ({impact_point[0]:.1f}, {impact_point[1]:.1f}), 3D: {impact_point_3d}",
f"Detections in frames: {filtered_frames}",
f"Total filtered detections: {len(filtered_frames)}"
])
# Save trajectory plot for debugging
import matplotlib.pyplot as plt
plt.plot(x_coords, y_coords, 'bo-', label='Filtered Detections')
plt.plot(pitch_point[0], pitch_point[1], 'ro', label='Pitch Point')
plt.plot(impact_point[0], impact_point[1], 'yo', label='Impact Point')
plt.legend()
plt.savefig("trajectory_debug.png")
return trajectory_2d, pitch_point, impact_point, pitch_frame, impact_frame, detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, "\n".join(debug_log)
def create_3d_plot(detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, plot_type="detections"):
"""Create 3D Plotly visualization for detections or trajectory using single-detection frames."""
stump_x = [-STUMPS_WIDTH/2, STUMPS_WIDTH/2, 0]
stump_y = [PITCH_LENGTH, PITCH_LENGTH, PITCH_LENGTH]
stump_z = [0, 0, 0]
stump_top_z = [STUMPS_HEIGHT, STUMPS_HEIGHT, STUMPS_HEIGHT]
bail_x = [-STUMPS_WIDTH/2, STUMPS_WIDTH/2]
bail_y = [PITCH_LENGTH, PITCH_LENGTH]
bail_z = [STUMPS_HEIGHT, STUMPS_HEIGHT]
stump_traces = []
for i in range(3):
stump_traces.append(go.Scatter3d(
x=[stump_x[i], stump_x[i]], y=[stump_y[i], stump_y[i]], z=[stump_z[i], stump_top_z[i]],
mode='lines', line=dict(color='black', width=5), name=f'Stump {i+1}'
))
bail_traces = [
go.Scatter3d(
x=bail_x, y=bail_y, z=bail_z,
mode='lines', line=dict(color='black', width=5), name='Bail'
)
]
pitch_scatter = go.Scatter3d(
x=[pitch_point_3d[0]] if pitch_point_3d else [],
y=[pitch_point_3d[1]] if pitch_point_3d else [],
z=[pitch_point_3d[2]] if pitch_point_3d else [],
mode='markers', marker=dict(size=8, color='red'), name='Pitch Point'
)
impact_scatter = go.Scatter3d(
x=[impact_point_3d[0]] if impact_point_3d else [],
y=[impact_point_3d[1]] if impact_point_3d else [],
z=[impact_point_3d[2]] if impact_point_3d else [],
mode='markers', marker=dict(size=8, color='yellow'), name='Impact Point'
)
if plot_type == "detections":
x, y, z = zip(*detections_3d) if detections_3d else ([], [], [])
scatter = go.Scatter3d(
x=x, y=y, z=z, mode='markers',
marker=dict(size=5, color='green'), name='Single Ball Detections'
)
data = [scatter, pitch_scatter, impact_scatter] + stump_traces + bail_traces
title = "3D Single Ball Detections"
else:
x, y, z = zip(*trajectory_3d) if trajectory_3d else ([], [], [])
trajectory_line = go.Scatter3d(
x=x, y=y, z=z, mode='lines',
line=dict(color='blue', width=4), name='Ball Trajectory (Single Detections)'
)
data = [trajectory_line, pitch_scatter, impact_scatter] + stump_traces + bail_traces
title = "3D Ball Trajectory (Single Detections)"
layout = go.Layout(
title=title,
scene=dict(
xaxis_title='X (meters)', yaxis_title='Y (meters)', zaxis_title='Z (meters)',
xaxis=dict(range=[-1.5, 1.5]), yaxis=dict(range=[0, PITCH_LENGTH]),
zaxis=dict(range=[0, STUMPS_HEIGHT * 2]), aspectmode='manual',
aspectratio=dict(x=1, y=4, z=0.5)
),
showlegend=True
)
fig = go.Figure(data=data, layout=layout)
return fig
def lbw_decision(ball_positions, trajectory, frames, pitch_point, impact_point):
if not frames:
return "Error: No frames processed", None, None, None
if not trajectory or len(ball_positions) < 2:
return "Not enough data (insufficient ball detections)", None, None, None
frame_height, frame_width = frames[0].shape[:2]
stumps_x = frame_width / 2
stumps_y = frame_height * 0.9
stumps_width_pixels = frame_width * (STUMPS_WIDTH / 3.0)
pitch_x, pitch_y = pitch_point
impact_x, impact_y = impact_point
if pitch_x < stumps_x - stumps_width_pixels / 2 or pitch_x > stumps_x + stumps_width_pixels / 2:
return f"Not Out (Pitched outside line at x: {pitch_x:.1f}, y: {pitch_y:.1f})", trajectory, pitch_point, impact_point
if impact_x < stumps_x - stumps_width_pixels / 2 or impact_x > stumps_x + stumps_width_pixels / 2:
return f"Not Out (Impact outside line at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
for x, y in trajectory:
if abs(x - stumps_x) < stumps_width_pixels / 2 and abs(y - stumps_y) < frame_height * 0.1:
return f"Out (Ball hits stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
return f"Not Out (Missing stumps, Pitch at x: {pitch_x:.1f}, y: {pitch_y:.1f}, Impact at x: {impact_x:.1f}, y: {impact_y:.1f})", trajectory, pitch_point, impact_point
def generate_slow_motion(frames, trajectory, pitch_point, impact_point, detection_frames, pitch_frame, impact_frame, output_path):
if not frames:
return None
frame_height, frame_width = frames[0].shape[:2]
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frame_width, frame_height))
if trajectory and detection_frames:
min_frame = min(detection_frames)
max_frame = max(detection_frames)
total_frames = max_frame - min_frame + 1
trajectory_points = np.array(trajectory, dtype=np.int32).reshape((-1, 1, 2))
traj_per_frame = len(trajectory) // total_frames
trajectory_indices = [i * traj_per_frame for i in range(total_frames)]
else:
trajectory_points = np.array([], dtype=np.int32)
trajectory_indices = []
for i, frame in enumerate(frames):
frame_idx = i - min_frame if trajectory_indices else -1
if frame_idx >= 0 and frame_idx < total_frames and trajectory_points.size > 0:
end_idx = trajectory_indices[frame_idx] + 1
cv2.polylines(frame, [trajectory_points[:end_idx]], False, (255, 0, 0), 2) # Blue line in BGR
if pitch_point and i == pitch_frame:
x, y = pitch_point
cv2.circle(frame, (int(x), int(y)), 8, (0, 0, 255), -1) # Red circle
cv2.putText(frame, "Pitch Point", (int(x) + 10, int(y) - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
if impact_point and i == impact_frame:
x, y = impact_point
cv2.circle(frame, (int(x), int(y)), 8, (0, 255, 255), -1) # Yellow circle
cv2.putText(frame, "Impact Point", (int(x) + 10, int(y) + 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 255), 2)
for _ in range(int(SLOW_MOTION_FACTOR)):
out.write(frame)
out.release()
return output_path
def drs_review(video):
frames, ball_positions, detection_frames, debug_log = process_video(video)
if not frames:
return f"Error: Failed to process video\nDebug Log:\n{debug_log}", None, None, None
trajectory_2d, pitch_point, impact_point, pitch_frame, impact_frame, detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, trajectory_log = estimate_trajectory(ball_positions, frames, detection_frames)
if trajectory_2d is None:
return (f"Error: {trajectory_log}\nDebug Log:\n{debug_log}", None, None, None)
decision, trajectory_2d, pitch_point, impact_point = lbw_decision(ball_positions, trajectory_2d, frames, pitch_point, impact_point)
output_path = f"output_{uuid.uuid4()}.mp4"
slow_motion_path = generate_slow_motion(frames, trajectory_2d, pitch_point, impact_point, detection_frames, pitch_frame, impact_frame, output_path)
detections_fig = None
trajectory_fig = None
if detections_3d:
detections_fig = create_3d_plot(detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, "detections")
trajectory_fig = create_3d_plot(detections_3d, trajectory_3d, pitch_point_3d, impact_point_3d, "trajectory")
debug_output = f"{debug_log}\n{trajectory_log}"
return (f"DRS Decision: {decision}\nDebug Log:\n{debug_output}",
slow_motion_path,
detections_fig,
trajectory_fig)
# Gradio interface
iface = gr.Interface(
fn=drs_review,
inputs=gr.Video(label="Upload Video Clip"),
outputs=[
gr.Textbox(label="DRS Decision and Debug Log"),
gr.Video(label="Very Slow-Motion Replay with Ball Detection (Green), Trajectory (Blue Line), Pitch Point (Red), Impact Point (Yellow)"),
gr.Plot(label="3D Single Ball Detections Plot"),
gr.Plot(label="3D Ball Trajectory Plot (Single Detections)")
],
title="AI-Powered DRS for LBW in Local Cricket",
description="Upload a video clip of a cricket delivery to get an LBW decision, a slow-motion replay, and 3D visualizations. The replay shows ball detection (green boxes), trajectory (blue line), pitch point (red circle), and impact point (yellow circle). The 3D plots show single-detection frames (green markers) and trajectory (blue line) with wicket lines (black), pitch point (red), and impact point (yellow)."
)
if __name__ == "__main__":
iface.launch() |