File size: 6,253 Bytes
fc1a8b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import pandas as pd
import streamlit as st
import time
import random
import os
# File Path
DATA_FILENAME = "Dr-En-space-test.csv"
DATA_PATH = os.path.join("data", DATA_FILENAME)
st.set_page_config(layout="wide")
# Load data
def load_data():
return pd.read_csv(DATA_PATH)
def save_data(data):
data.to_csv(DATA_PATH, index=False)
def skip_correction():
noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
if noncorrected_sentences:
st.session_state.orig_sentence = random.choice(noncorrected_sentences)
st.session_state.orig_translation = st.session_state.data[st.session_state.data.sentence == st.session_state.orig_sentence]['translation']
else:
st.session_state.orig_sentence = "No more sentences to be corrected"
st.session_state.orig_translation = "No more sentences to be corrected"
st.title("Darija Translation Corpus Collection")
if "data" not in st.session_state:
st.session_state.data = load_data()
if "sentence" not in st.session_state:
untranslated_sentences = st.session_state.data[st.session_state.data['translated'] == False]['sentence'].tolist()
if untranslated_sentences:
st.session_state.sentence = random.choice(untranslated_sentences)
else:
st.session_state.sentence = "No more sentences to translate"
if "orig_translation" not in st.session_state:
noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
noncorrected_translations = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['translation'].tolist()
if noncorrected_sentences:
st.session_state.orig_sentence = random.choice(noncorrected_sentences)
st.session_state.orig_translation = st.session_state.data.loc[st.session_state.data.sentence == st.session_state.orig_sentence]['translation'].values[0]
else:
st.session_state.orig_sentence = "No more sentences to be corrected"
st.session_state.orig_translation = "No more sentences to be corrected"
if "user_translation" not in st.session_state:
st.session_state.user_translation = ""
with st.sidebar:
st.subheader("About")
st.markdown("""This is app is designed to collect Darija translation corpus.""")
tab1, tab2 = st.tabs(["Translation", "Correction"])
with tab1:
with st.container():
st.subheader("Original Text:")
st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.sentence), unsafe_allow_html=True)
st.subheader("Translation:")
st.session_state.user_translation = st.text_area("Enter your translation here:", value=st.session_state.user_translation)
if st.button("💾 Save"):
if st.session_state.user_translation:
st.session_state.data.loc[st.session_state.data['sentence'] == st.session_state.sentence, 'translation'] = st.session_state.user_translation
st.session_state.data.loc[st.session_state.data['sentence'] == st.session_state.sentence, 'translated'] = True
save_data(st.session_state.data)
st.session_state.user_translation = "" # Reset the input value after saving
# st.toast("Saved!", icon="👏")
st.success("Saved!")
# Update the sentence for the next iteration.
untranslated_sentences = st.session_state.data[st.session_state.data['translated'] == False]['sentence'].tolist()
if untranslated_sentences:
st.session_state.sentence = random.choice(untranslated_sentences)
else:
st.session_state.sentence = "No more sentences to translate"
time.sleep(0.5)
# Rerun the app
st.rerun()
with tab2:
with st.container():
st.subheader("Original Darija Text:")
st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.orig_sentence), unsafe_allow_html=True)
with st.container():
st.subheader("Original English Translation:")
st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.orig_translation), unsafe_allow_html=True)
st.subheader("Corrected Darija Translation:")
corrected_translation = st.text_area("Enter the corrected Darija translation here:")
if st.button("💾 Save Translation"):
if corrected_translation:
st.session_state.data.loc[st.session_state.data['sentence'] == st.session_state.orig_sentence, 'translation'] = corrected_translation
st.session_state.data.loc[st.session_state.data['sentence'] == st.session_state.orig_sentence, 'correction'] = corrected_translation
st.session_state.data.loc[st.session_state.data['sentence'] == st.session_state.orig_sentence, 'corrected'] = True
save_data(st.session_state.data)
st.success("Saved!")
# Update the sentence for the next iteration.
noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
# noncorrected_sentences = st.session_state.data[st.session_state.data['corrected'] == False]['sentence'].tolist()
if noncorrected_sentences:
st.session_state.orig_sentence = random.choice(noncorrected_sentences)
st.session_state.orig_translation = st.session_state.data[st.session_state.data.sentence == st.session_state.orig_sentence]['translation']
else:
st.session_state.orig_translation = "No more sentences to be corrected"
corrected_translation = "" # Reset the input value after saving
st.button("⏩ Skip to the Next Pair", key="skip_button", on_click=skip_correction) |