File size: 29,199 Bytes
24d11d4 a388980 24d11d4 4c4fd67 48ea851 f177e4b 1f2d94c 24d11d4 a388980 11dbfc8 8e300b6 a265324 7dd8724 11dbfc8 569bde3 fae93d9 8e300b6 3a01622 569bde3 73b316c 569bde3 8d89bc1 3cbea34 569bde3 fae93d9 11dbfc8 8100ea5 2272dad 3cbea34 11dbfc8 fae93d9 d16d319 fae93d9 3ebd805 abe7804 a3810f8 fae93d9 5741be4 fae93d9 5741be4 932ee7e 5741be4 fae93d9 5741be4 2272dad a3810f8 fae93d9 7764421 fae93d9 7764421 fae93d9 7764421 8e300b6 4606755 3a01622 2272dad 8e300b6 3a01622 f7db219 3a01622 fae93d9 7764421 fae93d9 8100ea5 e69cb4a 7764421 fae93d9 7457e8c 8100ea5 7457e8c 830b0b6 7457e8c 8100ea5 b46dc11 f02ffb2 cd5cd0c 7c22da3 b46dc11 fae93d9 8100ea5 fae93d9 22e7bfa fae93d9 22e7bfa fae93d9 22e7bfa 31ef570 fae93d9 7457e8c 7764421 fae93d9 0e5c445 8833b5b 0e5c445 9db8ced 73a5c0d 7c4d92a 73a5c0d 7c4d92a 73a5c0d 0e5c445 9db8ced e5cb7bb 9db8ced e5cb7bb 9db8ced 14f0244 e5cb7bb 14f0244 e5cb7bb 14f0244 5a31018 0e5c445 447c0ca 0e5c445 2272dad 0e5c445 2272dad 0e5c445 447c0ca 0e5c445 0dace21 0e5c445 e34af36 cb000d3 a99cca3 3ebd3a8 f12455d 66adc5d 0dace21 e34af36 0dace21 e34af36 0dace21 8100ea5 e34af36 f730778 0dace21 3cbea34 a1afcb6 b46dc11 0dace21 e34af36 0dace21 8100ea5 e34af36 f730778 0dace21 fae93d9 0e5c445 3a01622 fae93d9 11dbfc8 69c0464 6e801f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 |
---
title: chat-ui
emoji: 🔥
colorFrom: purple
colorTo: purple
sdk: docker
pinned: false
license: apache-2.0
base_path: /chat
app_port: 3000
failure_strategy: rollback
---
# Chat UI
![Chat UI repository thumbnail](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/chatui-websearch.png)
A chat interface using open source models, eg OpenAssistant or Llama. It is a SvelteKit app and it powers the [HuggingChat app on hf.co/chat](https://huggingface.co/chat).
0. [No Setup Deploy](#no-setup-deploy)
1. [Setup](#setup)
2. [Launch](#launch)
3. [Web Search](#web-search)
4. [Text Embedding Models](#text-embedding-models)
5. [Extra parameters](#extra-parameters)
6. [Deploying to a HF Space](#deploying-to-a-hf-space)
7. [Building](#building)
## No Setup Deploy
If you don't want to configure, setup, and launch your own Chat UI yourself, you can use this option as a fast deploy alternative.
You can deploy your own customized Chat UI instance with any supported [LLM](https://huggingface.co/models?pipeline_tag=text-generation&sort=trending) of your choice on [Hugging Face Spaces](https://huggingface.co/spaces). To do so, use the chat-ui template [available here](https://huggingface.co/new-space?template=huggingchat/chat-ui-template).
Set `HF_TOKEN` in [Space secrets](https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables) to deploy a model with gated access or a model in a private repository. It's also compatible with [Inference for PROs](https://huggingface.co/blog/inference-pro) curated list of powerful models with higher rate limits. Make sure to create your personal token first in your [User Access Tokens settings](https://huggingface.co/settings/tokens).
Read the full tutorial [here](https://huggingface.co/docs/hub/spaces-sdks-docker-chatui#chatui-on-spaces).
## Setup
The default config for Chat UI is stored in the `.env` file. You will need to override some values to get Chat UI to run locally. This is done in `.env.local`.
Start by creating a `.env.local` file in the root of the repository. The bare minimum config you need to get Chat UI to run locally is the following:
```env
MONGODB_URL=<the URL to your MongoDB instance>
HF_TOKEN=<your access token>
```
### Database
The chat history is stored in a MongoDB instance, and having a DB instance available is needed for Chat UI to work.
You can use a local MongoDB instance. The easiest way is to spin one up using docker:
```bash
docker run -d -p 27017:27017 --name mongo-chatui mongo:latest
```
In which case the url of your DB will be `MONGODB_URL=mongodb://localhost:27017`.
Alternatively, you can use a [free MongoDB Atlas](https://www.mongodb.com/pricing) instance for this, Chat UI should fit comfortably within their free tier. After which you can set the `MONGODB_URL` variable in `.env.local` to match your instance.
### Hugging Face Access Token
If you use a remote inference endpoint, you will need a Hugging Face access token to run Chat UI locally. You can get one from [your Hugging Face profile](https://huggingface.co/settings/tokens).
## Launch
After you're done with the `.env.local` file you can run Chat UI locally with:
```bash
npm install
npm run dev
```
## Web Search
Chat UI features a powerful Web Search feature. It works by:
1. Generating an appropriate search query from the user prompt.
2. Performing web search and extracting content from webpages.
3. Creating embeddings from texts using a text embedding model.
4. From these embeddings, find the ones that are closest to the user query using a vector similarity search. Specifically, we use `inner product` distance.
5. Get the corresponding texts to those closest embeddings and perform [Retrieval-Augmented Generation](https://huggingface.co/papers/2005.11401) (i.e. expand user prompt by adding those texts so that an LLM can use this information).
## Text Embedding Models
By default (for backward compatibility), when `TEXT_EMBEDDING_MODELS` environment variable is not defined, [transformers.js](https://huggingface.co/docs/transformers.js) embedding models will be used for embedding tasks, specifically, [Xenova/gte-small](https://huggingface.co/Xenova/gte-small) model.
You can customize the embedding model by setting `TEXT_EMBEDDING_MODELS` in your `.env.local` file. For example:
```env
TEXT_EMBEDDING_MODELS = `[
{
"name": "Xenova/gte-small",
"displayName": "Xenova/gte-small",
"description": "locally running embedding",
"chunkCharLength": 512,
"endpoints": [
{"type": "transformersjs"}
]
},
{
"name": "intfloat/e5-base-v2",
"displayName": "intfloat/e5-base-v2",
"description": "hosted embedding model",
"chunkCharLength": 768,
"preQuery": "query: ", # See https://huggingface.co/intfloat/e5-base-v2#faq
"prePassage": "passage: ", # See https://huggingface.co/intfloat/e5-base-v2#faq
"endpoints": [
{
"type": "tei",
"url": "http://127.0.0.1:8080/",
"authorization": "TOKEN_TYPE TOKEN" // optional authorization field. Example: "Basic VVNFUjpQQVNT"
}
]
}
]`
```
The required fields are `name`, `chunkCharLength` and `endpoints`.
Supported text embedding backends are: [`transformers.js`](https://huggingface.co/docs/transformers.js), [`TEI`](https://github.com/huggingface/text-embeddings-inference) and [`OpenAI`](https://platform.openai.com/docs/guides/embeddings). `transformers.js` models run locally as part of `chat-ui`, whereas `TEI` models run in a different environment & accessed through an API endpoint. `openai` models are accessed through the [OpenAI API](https://platform.openai.com/docs/guides/embeddings).
When more than one embedding models are supplied in `.env.local` file, the first will be used by default, and the others will only be used on LLM's which configured `embeddingModel` to the name of the model.
## Extra parameters
### OpenID connect
The login feature is disabled by default and users are attributed a unique ID based on their browser. But if you want to use OpenID to authenticate your users, you can add the following to your `.env.local` file:
```env
OPENID_CONFIG=`{
PROVIDER_URL: "<your OIDC issuer>",
CLIENT_ID: "<your OIDC client ID>",
CLIENT_SECRET: "<your OIDC client secret>",
SCOPES: "openid profile",
TOLERANCE: // optional
RESOURCE: // optional
}`
```
These variables will enable the openID sign-in modal for users.
### Theming
You can use a few environment variables to customize the look and feel of chat-ui. These are by default:
```env
PUBLIC_APP_NAME=ChatUI
PUBLIC_APP_ASSETS=chatui
PUBLIC_APP_COLOR=blue
PUBLIC_APP_DESCRIPTION="Making the community's best AI chat models available to everyone."
PUBLIC_APP_DATA_SHARING=
PUBLIC_APP_DISCLAIMER=
```
- `PUBLIC_APP_NAME` The name used as a title throughout the app.
- `PUBLIC_APP_ASSETS` Is used to find logos & favicons in `static/$PUBLIC_APP_ASSETS`, current options are `chatui` and `huggingchat`.
- `PUBLIC_APP_COLOR` Can be any of the [tailwind colors](https://tailwindcss.com/docs/customizing-colors#default-color-palette).
- `PUBLIC_APP_DATA_SHARING` Can be set to 1 to add a toggle in the user settings that lets your users opt-in to data sharing with models creator.
- `PUBLIC_APP_DISCLAIMER` If set to 1, we show a disclaimer about generated outputs on login.
### Web Search config
You can enable the web search through an API by adding `YDC_API_KEY` ([docs.you.com](https://docs.you.com)) or `SERPER_API_KEY` ([serper.dev](https://serper.dev/)) or `SERPAPI_KEY` ([serpapi.com](https://serpapi.com/)) or `SERPSTACK_API_KEY` ([serpstack.com](https://serpstack.com/)) to your `.env.local`.
You can also simply enable the local google websearch by setting `USE_LOCAL_WEBSEARCH=true` in your `.env.local` or specify a SearXNG instance by adding the query URL to `SEARXNG_QUERY_URL`.
### Custom models
You can customize the parameters passed to the model or even use a new model by updating the `MODELS` variable in your `.env.local`. The default one can be found in `.env` and looks like this :
```env
MODELS=`[
{
"name": "mistralai/Mistral-7B-Instruct-v0.2",
"displayName": "mistralai/Mistral-7B-Instruct-v0.2",
"description": "Mistral 7B is a new Apache 2.0 model, released by Mistral AI that outperforms Llama2 13B in benchmarks.",
"websiteUrl": "https://mistral.ai/news/announcing-mistral-7b/",
"preprompt": "",
"chatPromptTemplate" : "<s>{{#each messages}}{{#ifUser}}[INST] {{#if @first}}{{#if @root.preprompt}}{{@root.preprompt}}\n{{/if}}{{/if}}{{content}} [/INST]{{/ifUser}}{{#ifAssistant}}{{content}}</s>{{/ifAssistant}}{{/each}}",
"parameters": {
"temperature": 0.3,
"top_p": 0.95,
"repetition_penalty": 1.2,
"top_k": 50,
"truncate": 3072,
"max_new_tokens": 1024,
"stop": ["</s>"]
},
"promptExamples": [
{
"title": "Write an email from bullet list",
"prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
}, {
"title": "Code a snake game",
"prompt": "Code a basic snake game in python, give explanations for each step."
}, {
"title": "Assist in a task",
"prompt": "How do I make a delicious lemon cheesecake?"
}
]
}
]`
```
You can change things like the parameters, or customize the preprompt to better suit your needs. You can also add more models by adding more objects to the array, with different preprompts for example.
#### chatPromptTemplate
When querying the model for a chat response, the `chatPromptTemplate` template is used. `messages` is an array of chat messages, it has the format `[{ content: string }, ...]`. To identify if a message is a user message or an assistant message the `ifUser` and `ifAssistant` block helpers can be used.
The following is the default `chatPromptTemplate`, although newlines and indentiation have been added for readability. You can find the prompts used in production for HuggingChat [here](https://github.com/huggingface/chat-ui/blob/main/PROMPTS.md).
```prompt
{{preprompt}}
{{#each messages}}
{{#ifUser}}{{@root.userMessageToken}}{{content}}{{@root.userMessageEndToken}}{{/ifUser}}
{{#ifAssistant}}{{@root.assistantMessageToken}}{{content}}{{@root.assistantMessageEndToken}}{{/ifAssistant}}
{{/each}}
{{assistantMessageToken}}
```
#### Multi modal model
We currently only support IDEFICS as a multimodal model, hosted on TGI. You can enable it by using the following config (if you have a PRO HF Api token):
```env
{
"name": "HuggingFaceM4/idefics-80b-instruct",
"multimodal" : true,
"description": "IDEFICS is the new multimodal model by Hugging Face.",
"preprompt": "",
"chatPromptTemplate" : "{{#each messages}}{{#ifUser}}User: {{content}}{{/ifUser}}<end_of_utterance>\nAssistant: {{#ifAssistant}}{{content}}\n{{/ifAssistant}}{{/each}}",
"parameters": {
"temperature": 0.1,
"top_p": 0.95,
"repetition_penalty": 1.2,
"top_k": 12,
"truncate": 1000,
"max_new_tokens": 1024,
"stop": ["<end_of_utterance>", "User:", "\nUser:"]
}
}
```
#### Running your own models using a custom endpoint
If you want to, instead of hitting models on the Hugging Face Inference API, you can run your own models locally.
A good option is to hit a [text-generation-inference](https://github.com/huggingface/text-generation-inference) endpoint. This is what is done in the official [Chat UI Spaces Docker template](https://huggingface.co/new-space?template=huggingchat/chat-ui-template) for instance: both this app and a text-generation-inference server run inside the same container.
To do this, you can add your own endpoints to the `MODELS` variable in `.env.local`, by adding an `"endpoints"` key for each model in `MODELS`.
```env
{
// rest of the model config here
"endpoints": [{
"type" : "tgi",
"url": "https://HOST:PORT",
}]
}
```
If `endpoints` are left unspecified, ChatUI will look for the model on the hosted Hugging Face inference API using the model name.
##### OpenAI API compatible models
Chat UI can be used with any API server that supports OpenAI API compatibility, for example [text-generation-webui](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/openai), [LocalAI](https://github.com/go-skynet/LocalAI), [FastChat](https://github.com/lm-sys/FastChat/blob/main/docs/openai_api.md), [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), and [ialacol](https://github.com/chenhunghan/ialacol).
The following example config makes Chat UI works with [text-generation-webui](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/openai), the `endpoint.baseUrl` is the url of the OpenAI API compatible server, this overrides the baseUrl to be used by OpenAI instance. The `endpoint.completion` determine which endpoint to be used, default is `chat_completions` which uses `v1/chat/completions`, change to `endpoint.completion` to `completions` to use the `v1/completions` endpoint.
```
MODELS=`[
{
"name": "text-generation-webui",
"id": "text-generation-webui",
"parameters": {
"temperature": 0.9,
"top_p": 0.95,
"repetition_penalty": 1.2,
"top_k": 50,
"truncate": 1000,
"max_new_tokens": 1024,
"stop": []
},
"endpoints": [{
"type" : "openai",
"baseURL": "http://localhost:8000/v1"
}]
}
]`
```
The `openai` type includes official OpenAI models. You can add, for example, GPT4/GPT3.5 as a "openai" model:
```
OPENAI_API_KEY=#your openai api key here
MODELS=`[{
"name": "gpt-4",
"displayName": "GPT 4",
"endpoints" : [{
"type": "openai"
}]
},
{
"name": "gpt-3.5-turbo",
"displayName": "GPT 3.5 Turbo",
"endpoints" : [{
"type": "openai"
}]
}]`
```
You may also consume any model provider that provides compatible OpenAI API endpoint. For example, you may self-host [Portkey](https://github.com/Portkey-AI/gateway) gateway and experiment with Claude or GPTs offered by Azure OpenAI. Example for Claude from Anthropic:
```
MODELS=`[{
"name": "claude-2.1",
"displayName": "Claude 2.1",
"description": "Anthropic has been founded by former OpenAI researchers...",
"parameters": {
"temperature": 0.5,
"max_new_tokens": 4096,
},
"endpoints": [
{
"type": "openai",
"baseURL": "https://gateway.example.com/v1",
"defaultHeaders": {
"x-portkey-config": '{"provider":"anthropic","api_key":"sk-ant-abc...xyz"}'
}
}
]
}]`
```
Example for GPT 4 deployed on Azure OpenAI:
```
MODELS=`[{
"id": "gpt-4-1106-preview",
"name": "gpt-4-1106-preview",
"displayName": "gpt-4-1106-preview",
"parameters": {
"temperature": 0.5,
"max_new_tokens": 4096,
},
"endpoints": [
{
"type": "openai",
"baseURL": "https://{resource-name}.openai.azure.com/openai/deployments/{deployment-id}",
"defaultHeaders": {
"api-key": "{api-key}"
},
"defaultQuery": {
"api-version": "2023-05-15"
}
}
]
}]`
```
Or try Mistral from [Deepinfra](https://deepinfra.com/mistralai/Mistral-7B-Instruct-v0.1/api?example=openai-http):
> Note, apiKey can either be set custom per endpoint, or globally using `OPENAI_API_KEY` variable.
```
MODELS=`[{
"name": "mistral-7b",
"displayName": "Mistral 7B",
"description": "A 7B dense Transformer, fast-deployed and easily customisable. Small, yet powerful for a variety of use cases. Supports English and code, and a 8k context window.",
"parameters": {
"temperature": 0.5,
"max_new_tokens": 4096,
},
"endpoints": [
{
"type": "openai",
"baseURL": "https://api.deepinfra.com/v1/openai",
"apiKey": "abc...xyz"
}
]
}]`
```
##### Llama.cpp API server
chat-ui also supports the llama.cpp API server directly without the need for an adapter. You can do this using the `llamacpp` endpoint type.
If you want to run chat-ui with llama.cpp, you can do the following, using Zephyr as an example model:
1. Get [the weights](https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF/tree/main) from the hub
2. Run the server with the following command: `./server -m models/zephyr-7b-beta.Q4_K_M.gguf -c 2048 -np 3`
3. Add the following to your `.env.local`:
```env
MODELS=`[
{
"name": "Local Zephyr",
"chatPromptTemplate": "<|system|>\n{{preprompt}}</s>\n{{#each messages}}{{#ifUser}}<|user|>\n{{content}}</s>\n<|assistant|>\n{{/ifUser}}{{#ifAssistant}}{{content}}</s>\n{{/ifAssistant}}{{/each}}",
"parameters": {
"temperature": 0.1,
"top_p": 0.95,
"repetition_penalty": 1.2,
"top_k": 50,
"truncate": 1000,
"max_new_tokens": 2048,
"stop": ["</s>"]
},
"endpoints": [
{
"url": "http://127.0.0.1:8080",
"type": "llamacpp"
}
]
}
]`
```
Start chat-ui with `npm run dev` and you should be able to chat with Zephyr locally.
#### Ollama
We also support the Ollama inference server. Spin up a model with
```cli
ollama run mistral
```
Then specify the endpoints like so:
```env
MODELS=`[
{
"name": "Ollama Mistral",
"chatPromptTemplate": "<s>{{#each messages}}{{#ifUser}}[INST] {{#if @first}}{{#if @root.preprompt}}{{@root.preprompt}}\n{{/if}}{{/if}} {{content}} [/INST]{{/ifUser}}{{#ifAssistant}}{{content}}</s> {{/ifAssistant}}{{/each}}",
"parameters": {
"temperature": 0.1,
"top_p": 0.95,
"repetition_penalty": 1.2,
"top_k": 50,
"truncate": 3072,
"max_new_tokens": 1024,
"stop": ["</s>"]
},
"endpoints": [
{
"type": "ollama",
"url" : "http://127.0.0.1:11434",
"ollamaName" : "mistral"
}
]
}
]`
```
#### Anthropic
We also support Anthropic models through the official SDK. You may provide your API key via the `ANTHROPIC_API_KEY` env variable, or alternatively, through the `endpoints.apiKey` as per the following example.
```
MODELS=`[
{
"name": "claude-3-sonnet-20240229",
"displayName": "Claude 3 Sonnet",
"description": "Ideal balance of intelligence and speed",
"parameters": {
"max_new_tokens": 4096,
},
"endpoints": [
{
"type": "anthropic",
// optionals
"apiKey": "sk-ant-...",
"baseURL": "https://api.anthropic.com",
defaultHeaders: {},
defaultQuery: {}
}
]
},
{
"name": "claude-3-opus-20240229",
"displayName": "Claude 3 Opus",
"description": "Most powerful model for highly complex tasks",
"parameters": {
"max_new_tokens": 4096
},
"endpoints": [
{
"type": "anthropic",
// optionals
"apiKey": "sk-ant-...",
"baseURL": "https://api.anthropic.com",
defaultHeaders: {},
defaultQuery: {}
}
]
}
]`
```
#### Amazon
You can also specify your Amazon SageMaker instance as an endpoint for chat-ui. The config goes like this:
```env
"endpoints": [
{
"type" : "aws",
"service" : "sagemaker"
"url": "",
"accessKey": "",
"secretKey" : "",
"sessionToken": "",
"region": "",
"weight": 1
}
]
```
You can also set `"service" : "lambda"` to use a lambda instance.
You can get the `accessKey` and `secretKey` from your AWS user, under programmatic access.
#### Cloudflare Workers AI
You can also use Cloudflare Workers AI to run your own models with serverless inference.
You will need to have a Cloudflare account, then get your [account ID](https://developers.cloudflare.com/fundamentals/setup/find-account-and-zone-ids/) as well as your [API token](https://developers.cloudflare.com/workers-ai/get-started/rest-api/#1-get-an-api-token) for Workers AI.
You can either specify them directly in your `.env.local` using the `CLOUDFLARE_ACCOUNT_ID` and `CLOUDFLARE_API_TOKEN` variables, or you can set them directly in the endpoint config.
You can find the list of models available on Cloudflare [here](https://developers.cloudflare.com/workers-ai/models/#text-generation).
```env
{
"name" : "nousresearch/hermes-2-pro-mistral-7b",
"tokenizer": "nousresearch/hermes-2-pro-mistral-7b",
"parameters": {
"stop": ["<|im_end|>"]
},
"endpoints" : [
{
"type" : "cloudflare"
<!-- optionally specify these
"accountId": "your-account-id",
"authToken": "your-api-token"
-->
}
]
}
```
> [!NOTE]
> Cloudlare Workers AI currently do not support custom sampling parameters like temperature, top_p, etc.
#### Cohere
You can also use Cohere to run their models directly from chat-ui. You will need to have a Cohere account, then get your [API token](https://dashboard.cohere.com/api-keys). You can either specify it directly in your `.env.local` using the `COHERE_API_TOKEN` variable, or you can set it in the endpoint config.
Here is an example of a Cohere model config. You can set which model you want to use by setting the `id` field to the model name.
```env
{
"name" : "CohereForAI/c4ai-command-r-v01",
"id": "command-r",
"description": "C4AI Command-R is a research release of a 35 billion parameter highly performant generative model",
"endpoints": [
{
"type": "cohere",
<!-- optionally specify these, or use COHERE_API_TOKEN
"apiKey": "your-api-token"
-->
}
]
}
```
##### Google Vertex models
Chat UI can connect to the google Vertex API endpoints ([List of supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models)).
To enable:
1. [Select](https://console.cloud.google.com/project) or [create](https://cloud.google.com/resource-manager/docs/creating-managing-projects#creating_a_project) a Google Cloud project.
1. [Enable billing for your project](https://cloud.google.com/billing/docs/how-to/modify-project).
1. [Enable the Vertex AI API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com).
1. [Set up authentication with a service account](https://cloud.google.com/docs/authentication/getting-started)
so you can access the API from your local workstation.
The service account credentials file can be imported as an environmental variable:
```env
GOOGLE_APPLICATION_CREDENTIALS = clientid.json
```
Make sure docker has access to the file. Afterwards Google Vertex endpoints can be configured as following:
```
MODELS=`[
//...
{
"name": "gemini-1.0-pro", //model-name
"displayName": "Vertex Gemini Pro 1.0",
"location": "europe-west3",
"apiEndpoint": "", //alternative api endpoint url
"endpoints" : [{
"type": "vertex"
}]
},
]`
```
##### LangServe
LangChain applications that are deployed using LangServe can be called with the following config:
```
MODELS=`[
//...
{
"name": "summarization-chain", //model-name
"endpoints" : [{
"type": "langserve",
"url" : "http://127.0.0.1:8100",
}]
},
]`
```
### Custom endpoint authorization
#### Basic and Bearer
Custom endpoints may require authorization, depending on how you configure them. Authentication will usually be set either with `Basic` or `Bearer`.
For `Basic` we will need to generate a base64 encoding of the username and password.
`echo -n "USER:PASS" | base64`
> VVNFUjpQQVNT
For `Bearer` you can use a token, which can be grabbed from [here](https://huggingface.co/settings/tokens).
You can then add the generated information and the `authorization` parameter to your `.env.local`.
```env
"endpoints": [
{
"url": "https://HOST:PORT",
"authorization": "Basic VVNFUjpQQVNT",
}
]
```
Please note that if `HF_TOKEN` is also set or not empty, it will take precedence.
#### Models hosted on multiple custom endpoints
If the model being hosted will be available on multiple servers/instances add the `weight` parameter to your `.env.local`. The `weight` will be used to determine the probability of requesting a particular endpoint.
```env
"endpoints": [
{
"url": "https://HOST:PORT",
"weight": 1
},
{
"url": "https://HOST:PORT",
"weight": 2
}
...
]
```
#### Client Certificate Authentication (mTLS)
Custom endpoints may require client certificate authentication, depending on how you configure them. To enable mTLS between Chat UI and your custom endpoint, you will need to set the `USE_CLIENT_CERTIFICATE` to `true`, and add the `CERT_PATH` and `KEY_PATH` parameters to your `.env.local`. These parameters should point to the location of the certificate and key files on your local machine. The certificate and key files should be in PEM format. The key file can be encrypted with a passphrase, in which case you will also need to add the `CLIENT_KEY_PASSWORD` parameter to your `.env.local`.
If you're using a certificate signed by a private CA, you will also need to add the `CA_PATH` parameter to your `.env.local`. This parameter should point to the location of the CA certificate file on your local machine.
If you're using a self-signed certificate, e.g. for testing or development purposes, you can set the `REJECT_UNAUTHORIZED` parameter to `false` in your `.env.local`. This will disable certificate validation, and allow Chat UI to connect to your custom endpoint.
#### Specific Embedding Model
A model can use any of the embedding models defined in `.env.local`, (currently used when web searching),
by default it will use the first embedding model, but it can be changed with the field `embeddingModel`:
```env
TEXT_EMBEDDING_MODELS = `[
{
"name": "Xenova/gte-small",
"chunkCharLength": 512,
"endpoints": [
{"type": "transformersjs"}
]
},
{
"name": "intfloat/e5-base-v2",
"chunkCharLength": 768,
"endpoints": [
{"type": "tei", "url": "http://127.0.0.1:8080/", "authorization": "Basic VVNFUjpQQVNT"},
{"type": "tei", "url": "http://127.0.0.1:8081/"}
]
}
]`
MODELS=`[
{
"name": "Ollama Mistral",
"chatPromptTemplate": "...",
"embeddingModel": "intfloat/e5-base-v2"
"parameters": {
...
},
"endpoints": [
...
]
}
]`
```
## Deploying to a HF Space
Create a `DOTENV_LOCAL` secret to your HF space with the content of your .env.local, and they will be picked up automatically when you run.
## Building
To create a production version of your app:
```bash
npm run build
```
You can preview the production build with `npm run preview`.
> To deploy your app, you may need to install an [adapter](https://kit.svelte.dev/docs/adapters) for your target environment.
## Config changes for HuggingChat
The config file for HuggingChat is stored in the `.env.template` file at the root of the repository. It is the single source of truth that is used to generate the actual `.env.local` file using our CI/CD pipeline. See [updateProdEnv](https://github.com/huggingface/chat-ui/blob/cdb33a9583f5339ade724db615347393ef48f5cd/scripts/updateProdEnv.ts) for more details.
> [!TIP]
> If you want to make changes to model config for HuggingChat, you should do so against `.env.template`.
We currently use the following secrets for deploying HuggingChat in addition to the `.env.template` above:
- `MONGODB_URL`
- `HF_TOKEN`
- `OPENID_CONFIG`
- `SERPER_API_KEY`
They are defined as secrets in the repository.
### Testing config changes locally
You can test the config changes locally by first creating an `.env.SECRET_CONFIG` file with the secrets defined above. Then you can run the following command to generate the `.env.local` file:
```bash
npm run updateLocalEnv
```
This will replace your `.env.local` file with the one that will be used in prod (simply taking `.env.template + .env.SECRET_CONFIG`).
### Populate database
> [!WARNING]
> The `MONGODB_URL` used for this script will be fetched from `.env.local`. Make sure it's correct! The command runs directly on the database.
You can populate the database using faker data using the `populate` script:
```bash
npm run populate <flags here>
```
At least one flag must be specified, the following flags are available:
- `reset` - resets the database
- `all` - populates all tables
- `users` - populates the users table
- `settings` - populates the settings table for existing users
- `assistants` - populates the assistants table for existing users
- `conversations` - populates the conversations table for existing users
For example, you could use it like so:
```bash
npm run populate reset
```
to clear out the database. Then login in the app to create your user and run the following command:
```bash
npm run populate users settings assistants conversations
```
to populate the database with fake data, including fake conversations and assistants for your user.
|