File size: 13,304 Bytes
22d7b97
 
 
f93eee7
 
 
 
 
 
 
 
 
09fc057
 
f93eee7
1549695
 
 
 
 
 
 
 
 
 
 
 
 
f93eee7
8582ce1
 
 
 
 
 
0fc95fb
8582ce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2384c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dff58d2
 
f2384c6
 
8582ce1
f93eee7
aab7222
 
25c844d
aab7222
bfec739
50d8483
aab7222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f78b90
c51be65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce611a
 
bc00b35
5f78b90
fce611a
5f78b90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c51be65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50e0ab9
 
 
 
 
 
 
 
 
 
 
c51be65
c5fac96
 
 
 
 
 
 
69b2997
c5fac96
e3ca107
c5fac96
af66ff6
c5fac96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f3a64f
c51be65
 
 
4f3a64f
c51be65
 
3d2e621
4f3a64f
c51be65
f93eee7
22d7b97
 
9b99c58
 
 
 
884fe73
26e028a
a8ca669
a3a5e3c
29b7d2a
 
 
 
884fe73
9187ced
a0a9c1c
9187ced
96d25a6
 
 
 
 
 
 
9567da6
96d25a6
 
 
 
 
 
22d7b97
 
 
59bfb21
22d7b97
 
 
 
830b0b6
73a5c0d
a149a6a
22d7b97
 
dddb85f
0410c78
22d7b97
 
6022aed
c30d191
992a8de
3f5871c
7d34920
9405754
3890de7
 
 
 
3f5871c
dff58d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# template used in production for HuggingChat.

MODELS=`[
  {
    "name" : "CohereForAI/c4ai-command-r-plus",
    "tokenizer": "Xenova/c4ai-command-r-v01-tokenizer",
    "description": "Command R+ is Cohere's latest LLM and is the first open weight model to beat GPT4 in the Chatbot Arena!",
    "modelUrl": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
    "websiteUrl": "https://docs.cohere.com/docs/command-r-plus",
    "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/cohere-logo.png",
    "parameters": {
      "stop": ["<|END_OF_TURN_TOKEN|>"],
      "truncate" : 28672,
      "max_new_tokens" : 4096,
      "temperature" : 0.3
    },
    "promptExamples" : [
      {
        "title": "Write an email from bullet list",
        "prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
      }, {
        "title": "Code a snake game",
        "prompt": "Code a basic snake game in python, give explanations for each step."
      }, {
        "title": "Assist in a task",
        "prompt": "How do I make a delicious lemon cheesecake?"
      }
    ]
  },
  {
    "name" : "meta-llama/Meta-Llama-3-70B-Instruct",
    "description": "Generation over generation, Meta Llama 3 demonstrates state-of-the-art performance on a wide range of industry benchmarks and offers new capabilities, including improved reasoning.",
    "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/meta-logo.png",
    "modelUrl": "https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct",
    "websiteUrl": "https://llama.meta.com/llama3/",
    "tokenizer" : "philschmid/meta-llama-3-tokenizer",
    "promptExamples" : [
      {
        "title": "Write an email from bullet list",
        "prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
      }, {
        "title": "Code a snake game",
        "prompt": "Code a basic snake game in python, give explanations for each step."
      }, {
        "title": "Assist in a task",
        "prompt": "How do I make a delicious lemon cheesecake?"
      }
    ],
    "parameters": {
      "stop": ["<|eot_id|>"],
      "truncate": 6144,
      "max_new_tokens": 2047
    }
  },
  {
    "name" : "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
    "tokenizer": "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
    "description": "Zephyr 141B-A35B is a fine-tuned version of Mistral 8x22B, trained using ORPO, a novel alignment algorithm.",
    "modelUrl": "https://huggingface.co/HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
    "websiteUrl": "https://huggingface.co/HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
    "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/zephyr-logo.png",
    "parameters": {
      "truncate" : 24576,
      "max_new_tokens" : 8192,
    },
    "preprompt" : "You are Zephyr, an assistant developed by KAIST AI, Argilla, and Hugging Face. You should give concise responses to very simple questions, but provide thorough responses to more complex and open-ended questions. You are happy to help with writing, analysis, question answering, math, coding, and all sorts of other tasks.",
    "promptExamples" : [
      {
        "title": "Write a poem",
        "prompt": "Write a poem to help me remember the first 10 elements on the periodic table, giving each element its own line."
      }, {
        "title": "Code a snake game",
        "prompt": "Code a basic snake game in python, give explanations for each step."
      }, {
        "title": "Assist in a task",
        "prompt": "How do I make a delicious lemon cheesecake?"
      }
    ]
  },
  {
    "name" : "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "description" : "The latest MoE model from Mistral AI! 8x7B and outperforms Llama 2 70B in most benchmarks.",
    "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/mistral-logo.png",
    "websiteUrl" : "https://mistral.ai/news/mixtral-of-experts/",
    "modelUrl": "https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1",
    "tokenizer": "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "preprompt" : "",
    "chatPromptTemplate": "<s> {{#each messages}}{{#ifUser}}[INST]{{#if @first}}{{#if @root.preprompt}}{{@root.preprompt}}\n{{/if}}{{/if}} {{content}} [/INST]{{/ifUser}}{{#ifAssistant}} {{content}}</s> {{/ifAssistant}}{{/each}}",
    "parameters" : {
      "temperature" : 0.6,
      "top_p" : 0.95,
      "repetition_penalty" : 1.2,
      "top_k" : 50,
      "truncate" : 24576,
      "max_new_tokens" : 8192,
      "stop" : ["</s>"]
    },
    "promptExamples" : [
      {
        "title": "Write an email from bullet list",
        "prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
      }, {
        "title": "Code a snake game",
        "prompt": "Code a basic snake game in python, give explanations for each step."
      }, {
        "title": "Assist in a task",
        "prompt": "How do I make a delicious lemon cheesecake?"
      }
    ]
  },
  {
      "name" : "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
      "description" : "Nous Hermes 2 Mixtral 8x7B DPO is the new flagship Nous Research model trained over the Mixtral 8x7B MoE LLM.",
      "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/nous-logo.png",
      "websiteUrl" : "https://nousresearch.com/",
      "modelUrl": "https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
      "tokenizer": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
      "chatPromptTemplate" : "{{#if @root.preprompt}}<|im_start|>system\n{{@root.preprompt}}<|im_end|>\n{{/if}}{{#each messages}}{{#ifUser}}<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n{{/ifUser}}{{#ifAssistant}}{{content}}<|im_end|>\n{{/ifAssistant}}{{/each}}",
      "promptExamples": [
        {
          "title": "Write an email from bullet list",
          "prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
        }, {
          "title": "Code a snake game",
          "prompt": "Code a basic snake game in python, give explanations for each step."
        }, {
          "title": "Assist in a task",
          "prompt": "How do I make a delicious lemon cheesecake?"
        }
      ],
      "parameters": {
        "temperature": 0.7,
        "top_p": 0.95,
        "repetition_penalty": 1,
        "top_k": 50,
        "truncate": 24576,
        "max_new_tokens": 2048,
        "stop": ["<|im_end|>"]
      }
    },
      {
    "name" : "google/gemma-1.1-7b-it",
    "description": "Gemma 7B 1.1 is the latest release in the Gemma family of lightweight models built by Google, trained using a novel RLHF method.",
    "websiteUrl" : "https://blog.google/technology/developers/gemma-open-models/",
    "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/google-logo.png",
    "modelUrl": "https://huggingface.co/google/gemma-1.1-7b-it",
    "preprompt": "",
    "chatPromptTemplate" : "{{#each messages}}{{#ifUser}}<start_of_turn>user\n{{#if @first}}{{#if @root.preprompt}}{{@root.preprompt}}\n{{/if}}{{/if}}{{content}}<end_of_turn>\n<start_of_turn>model\n{{/ifUser}}{{#ifAssistant}}{{content}}<end_of_turn>\n{{/ifAssistant}}{{/each}}",
    "promptExamples": [
      {
        "title": "Write an email from bullet list",
        "prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
      }, {
        "title": "Code a snake game",
        "prompt": "Code a basic snake game in python, give explanations for each step."
      }, {
        "title": "Assist in a task",
        "prompt": "How do I make a delicious lemon cheesecake?"
      }
    ],
    "parameters": {
        "do_sample": true,
        "truncate": 7168,
        "max_new_tokens": 1024,
        "stop" : ["<end_of_turn>"]
      }
  },

        {
      "name": "mistralai/Mistral-7B-Instruct-v0.2",
      "displayName": "mistralai/Mistral-7B-Instruct-v0.2",
      "description": "Mistral 7B is a new Apache 2.0 model, released by Mistral AI that outperforms Llama2 13B in benchmarks.",
      "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/mistral-logo.png",
      "websiteUrl": "https://mistral.ai/news/announcing-mistral-7b/",
      "modelUrl": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
      "tokenizer": "mistralai/Mistral-7B-Instruct-v0.2",
      "preprompt": "",
      "chatPromptTemplate" : "<s>{{#each messages}}{{#ifUser}}[INST] {{#if @first}}{{#if @root.preprompt}}{{@root.preprompt}}\n{{/if}}{{/if}}{{content}} [/INST]{{/ifUser}}{{#ifAssistant}}{{content}}</s>{{/ifAssistant}}{{/each}}",
      "parameters": {
        "temperature": 0.3,
        "top_p": 0.95,
        "repetition_penalty": 1.2,
        "top_k": 50,
        "truncate": 3072,
        "max_new_tokens": 1024,
        "stop": ["</s>"]
      },
      "promptExamples": [
        {
          "title": "Write an email from bullet list",
          "prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
        }, {
          "title": "Code a snake game",
          "prompt": "Code a basic snake game in python, give explanations for each step."
        }, {
          "title": "Assist in a task",
          "prompt": "How do I make a delicious lemon cheesecake?"
        }
      ]
    },
    {
      "name": "microsoft/Phi-3-mini-4k-instruct",
      "tokenizer": "microsoft/Phi-3-mini-4k-instruct",
      "description" : "Phi-3 Mini-4K-Instruct is a 3.8B parameters, lightweight, state-of-the-art open model built upon datasets used for Phi-2.",
      "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/microsoft-logo.png",
      "modelUrl": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
      "websiteUrl": "https://azure.microsoft.com/en-us/blog/introducing-phi-3-redefining-whats-possible-with-slms/",
      "preprompt": "",
      "chatPromptTemplate": "<s>{{preprompt}}{{#each messages}}{{#ifUser}}<|user|>\n{{content}}<|end|>\n<|assistant|>\n{{/ifUser}}{{#ifAssistant}}{{content}}<|end|>\n{{/ifAssistant}}{{/each}}",
      "parameters": {
        "stop": ["<|end|>", "<|endoftext|>", "<|assistant|>"],
        "max_new_tokens": 1024,
        "truncate": 3071
      },
      "promptExamples": [
        {
          "title": "Write an email from bullet list",
          "prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)"
        }, {
          "title": "Code a snake game",
          "prompt": "Code a basic snake game in python, give explanations for each step."
        }, {
          "title": "Assist in a task",
          "prompt": "How do I make a delicious lemon cheesecake?"
        }
      ]
    },
    {
      "name": "meta-llama/Meta-Llama-3-8B-Instruct",
      "tokenizer" : "philschmid/meta-llama-3-tokenizer",
      "parameters": {
        "temperature": 0.1,
        "stop": ["<|eot_id|>"],
        "truncate": 1024,
      },
      "unlisted": true
    }
]`

OLD_MODELS=`[
  {"name":"bigcode/starcoder"},
  {"name":"OpenAssistant/oasst-sft-6-llama-30b-xor"},
  {"name":"HuggingFaceH4/zephyr-7b-alpha"},
  {"name":"openchat/openchat_3.5"},
  {"name":"openchat/openchat-3.5-1210"},
  {"name": "tiiuae/falcon-180B-chat"},
  {"name": "codellama/CodeLlama-34b-Instruct-hf"},
  {"name": "google/gemma-7b-it"},
  {"name": "meta-llama/Llama-2-70b-chat-hf"},
  {"name": "codellama/CodeLlama-70b-Instruct-hf"},
  {"name": "openchat/openchat-3.5-0106"}
]`

TASK_MODEL='meta-llama/Meta-Llama-3-8B-Instruct'

TEXT_EMBEDDING_MODELS = `[
  {
    "name": "bge-base-en-v1-5-sxa",
    "displayName": "bge-base-en-v1-5-sxa",
    "chunkCharLength": 512,
    "endpoints": [
      { "type": "tei",
        "url" : "https://huggingchat-tei.hf.space/"
      }
    ]
  }
]`


APP_BASE="/chat"
PUBLIC_ORIGIN=https://huggingface.co
PUBLIC_SHARE_PREFIX=https://hf.co/chat
PUBLIC_ANNOUNCEMENT_BANNERS=`[]`

PUBLIC_APP_NAME=HuggingChat
PUBLIC_APP_ASSETS=huggingchat
PUBLIC_APP_COLOR=yellow
PUBLIC_APP_DESCRIPTION="Making the community's best AI chat models available to everyone."
PUBLIC_APP_DISCLAIMER_MESSAGE="Disclaimer: AI is an area of active research with known problems such as biased generation and misinformation. Do not use this application for high-stakes decisions or advice."
PUBLIC_APP_DATA_SHARING=0
PUBLIC_APP_DISCLAIMER=1

PUBLIC_PLAUSIBLE_SCRIPT_URL="/js/script.js"
PUBLIC_APPLE_APP_ID=6476778843
# Not part of the .env but set as other variables in the space
# ADDRESS_HEADER=X-Forwarded-For
# XFF_DEPTH=2

ENABLE_ASSISTANTS=true
ENABLE_ASSISTANTS_RAG=true
REQUIRE_FEATURED_ASSISTANTS=true
EXPOSE_API=true

ALTERNATIVE_REDIRECT_URLS=`[
  huggingchat://login/callback
]`

WEBSEARCH_BLOCKLIST=`["youtube.com", "twitter.com"]`