File size: 7,908 Bytes
323d67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335326a
323d67d
 
 
 
 
 
 
86d44dc
323d67d
 
 
335326a
323d67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86d44dc
 
323d67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86d44dc
323d67d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os

import torch
import spaces

import gradio as gr
import torch
from artistic_portrait.pipeline import ArtisticPortraitXLPipeline
from diffusers import ControlNetModel, DPMSolverMultistepScheduler
from ip_adapter_diffusers.ip_adapter import *

from huggingface_hub import hf_hub_download

style_adapter_path = "models/ip_adapter_art_sdxl_512.pth"
id_adapter_path = "models/pulid_adapter_diffusers_1.1.pth"
if not os.path.exists("models/csd_clip.pth"):
    hf_hub_download(
        repo_id="AisingioroHao0/IP-Adapter-Art",
        filename="csd_clip.pth",
        local_dir="models",
    )
if not os.path.exists(style_adapter_path):
    hf_hub_download(
        repo_id="AisingioroHao0/IP-Adapter-Art",
        filename="ip_adapter_art_sdxl_512.pth",
        local_dir="models",
    )
if not os.path.exists(id_adapter_path):
    hf_hub_download(
        repo_id="AisingioroHao0/IP-Adapter-Art",
        filename="pulid_adapter_diffusers_1.1.pth",
        local_dir="models",
    )

device = "cuda" if torch.cuda.is_available() else "cpu"
sdxl_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"

torch_dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32

# Load pretrained models.
print("Initializing pipeline...")
controlnet = ControlNetModel.from_pretrained(
    "xinsir/controlnet-openpose-sdxl-1.0",
    torch_dtype=torch_dtype,
).to(device)
pipe = ArtisticPortraitXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet,
    safety_checker=None,
    torch_dtype=torch_dtype,
    style_adapter_path=style_adapter_path,
    id_adapter_path=id_adapter_path,
    device=device,
).to(device)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
    pipe.scheduler.config, timestep_spacing="trailing"
)
load_ip_adapter(
    pipe.controlnet,
    "models/ip_adapter_art_sdxl_512.pth",
)

example_inputs = [
    [
        "datasets/test/style_dataset/Abstract D'Oyley.jpg",
        "datasets/test/id_dataset/lifeifei.jpg",
    ],
    [
        "datasets/test/style_dataset/Adam Zyglis.jpg",
        "datasets/test/id_dataset/lecun.jpg",
    ],
    [
        "datasets/test/style_dataset/Diffused lighting.jpg",
        "datasets/test/id_dataset/liuyifei.jpg",
    ],
    [
        "datasets/test/style_dataset/Shirley Hughes.jpg",
        "datasets/test/id_dataset/rihanna.jpg",
    ],
    [
        "datasets/test/style_dataset/Winter.jpg",
        "datasets/test/id_dataset/hinton.jpg",
    ],
]


@spaces.GPU(enable_queue=True)
def generation(
    style_image=None,
    id_image=None,
    pose_image=None,
    prompt="portrait, solo, looking at viewer, best quality, masterpiece",
    negative_prompt="flaws in the eyes, flaws in the face, flaws, lowres, non-HDRi, low quality, worst quality,artifacts noise, text, watermark, glitch, deformed, mutated, ugly, disfigured, hands, low resolution, partially rendered objects,  deformed or partially rendered eyes, deformed, deformed eyeballs, cross-eyed",
    num_inference_steps=20,
    guidance_scale=7.0,
    style_scale=1.0,
    id_scale=1.0,
    controlnet_scale=0.9,
    seed=42,
    height=1024,
    width=1024,
    artify_contorlnet_scale=0.0,
):
    set_ip_adapter_scale(pipe.controlnet, artify_contorlnet_scale)
    result = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        control_image=pose_image,
        controlnet_conditioning_scale=controlnet_scale,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        style_image=style_image,
        id_image=id_image,
        generator=torch.Generator(device).manual_seed(seed),
        id_scale=id_scale,
        style_scale=style_scale,
    ).images[0]

    return result


with gr.Blocks(delete_cache=(3600, 3600)) as demo:
    gr.Markdown(
        """
    # Artistic Portrait Generation 0.9: Generate Customized Artistic Portrait through Style Reference Images
    
    **Implementation based on [Art-Adapter](https://github.com/aihao2000/IP-Adapter-Art), [PuLID-Adapter](https://github.com/ToTheBeginning/PuLID), and [Instant Style](https://github.com/instantX-research/InstantStyle).**
    
    ## Basic usage: 
    - Stylized Portrait Generation: Upload the style reference image and ID reference image, and click "Generation" to generate the artistic portrait directly.
    - Text-guided Stylization Generation: Set ID Scale to 0, modify prompt, and then try text-guided stylized image generation through **Art-Adapter**. **(Note that ID image cannot be empty in the current version.)**
    
    _If the style similarity is low, try increasing the Stylize Contorlnet Scale, or set the Controlnet Scale to 0._
    
    ## News
    
    - 2025.3.24: We released Artistic Portrait Generation 0.9.
    """
    )
    with gr.Row():
        with gr.Column():

            with gr.Row():
                style_image = gr.Image(
                    label="Style Reference Image",
                    type="pil",
                )
                id_image = gr.Image(
                    label="ID Reference Image",
                    type="pil",
                )
                pose_image = gr.Image(
                    label="Pose Reference Image",
                    type="pil",
                    value="datasets/test/pose.jpg",
                )
            with gr.Row():
                clear_btn = gr.ClearButton()
                generation_btn = gr.Button("Generation")
            with gr.Row():
                id_scale = gr.Number(label="ID Scale", value=1.0, step=0.1)
                style_scale = gr.Number(label="Style Scale", value=1.0, step=0.1)
                controlnet_scale = gr.Number(
                    label="ControlNet Scale", value=0.9, step=0.1
                )
                stylize_contorlnet_scale = gr.Number(
                    label="Stylize ControlNet Scale", value=0.0, step=0.1
                )
                guidance_scale = gr.Number(label="CFG Scale", value=7.0, step=0.1)
            with gr.Row():
                height = gr.Number(label="Height", step=1, maximum=1024, value=1024)
                width = gr.Number(label="Width", step=1, maximum=1024, value=1024)
                seed = gr.Number(label="Seed", value=42, step=1)
                num_inference_steps = gr.Number(label="Steps", value=20, step=1)
            prompt = gr.Textbox(
                label="Prompt",
                value="portrait, solo, looking at viewer, best quality, masterpiece",
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                value="flaws in the eyes, flaws in the face, flaws, lowres, non-HDRi, low quality, worst quality,artifacts noise, text, watermark, glitch, deformed, mutated, ugly, disfigured, hands, low resolution, partially rendered objects,  deformed or partially rendered eyes, deformed, deformed eyeballs, cross-eyed",
            )

        with gr.Column():
            output = gr.Image(label="Result", type="pil")
    with gr.Row():
        examples = gr.Examples(
            examples=example_inputs,
            inputs=[style_image, id_image],
            outputs=[
                output,
            ],
            fn=lambda x, y: None,
            cache_examples=False,
        )

    clear_btn.add([style_image, id_image, pose_image, output])

    generation_btn.click(
        generation,
        inputs=[
            style_image,
            id_image,
            pose_image,
            prompt,
            negative_prompt,
            num_inference_steps,
            guidance_scale,
            style_scale,
            id_scale,
            controlnet_scale,
            seed,
            height,
            width,
            stylize_contorlnet_scale,
        ],
        outputs=[output],
        api_name="artistic_portrait_gen",
    )

demo.queue().launch(share=True)