File size: 4,831 Bytes
49e6625
 
 
0f85536
49e6625
0f85536
49e6625
 
 
 
0f85536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e6625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0709795
49e6625
 
 
fd4a7df
49e6625
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from statistics import mode
import urllib.request
import gradio as gr
import subprocess
import unidecode
import requests
import string
import json


# Download files using wget
keys_url = "https://github.com/Nkluge-correa/Aira/raw/master/Aira-1/data/generated_data/keys_en.json"
answers_url = "https://github.com/Nkluge-correa/Aira/raw/master/Aira-1/data/original_data/answers_en.txt"

subprocess.run(["wget", keys_url, "-O", "keys_en.json"])
subprocess.run(["wget", answers_url, "-O", "answers_en.txt"])

# Load data from files
with open('answers_en.txt', encoding='utf-8') as fp:
    answers = [line.strip() for line in fp]

with open('keys_en.json', 'r') as fp:
    vocabulary = json.load(fp)


with open('keys_en.json') as json_file:
    dictionary = json.load(json_file)

def generate_ngrams(text, WordsToCombine):
    """
    Generates n-grams of length WordsToCombine from the input text.

    Args:
        text: A string representing the input text
        WordsToCombine: An integer representing the
            size of the n-grams to be generated

    Returns:
        A list of n-grams generated from the input text, where each
        n-gram is a list of WordsToCombine words
    """
    words = text.split()
    output = []
    for i in range(len(words) - WordsToCombine+1):
        output.append(words[i:i+WordsToCombine])
    return output


def make_keys(text, WordsToCombine):
    """
    Given a text and a number of words to combine, returns
    a list of keys that correspond to all possible combinations
    of n-grams (sequences of n consecutive words) in the text.

    Args:
        - text (str): The input text.
        - WordsToCombine (int): The number of words to combine.

    Returns:
        - sentences (list of str): A list of all the keys, which are
        the n-grams in the text.
    """
    gram = generate_ngrams(text, WordsToCombine)
    sentences = []
    for i in range(0, len(gram)):
        sentence = ' '.join(gram[i])
        sentences.append(sentence)
    return sentences


def chat(message, history):
    """
    A function that generates a response to a user input message
    based on a pre-built dictionary of responses.

    Args:
        message (str): A string representing the user's input message.
        history (list): A list of tuples containing previous
        messages and responses.

    Returns:
        tuple: A tuple containing two lists of tuples. The first list is
        the original history with the user's input message and the bot's
        response appended as a tuple. The second list is an updated history
        with the same tuples.
    """
    history = history or []
    text = message.lower()
    sentences = []
    values = []
    new_text = text.translate(str.maketrans('', '', string.punctuation))
    new_text = unidecode.unidecode(new_text)

    if len(new_text.split()) == 1:
        if new_text in dictionary.keys():
            l = [dictionary[new_text]] * 100
            values.append(l)
        new_text = new_text + ' ' + new_text

    else:
        if new_text in dictionary.keys():
            l = [dictionary[new_text]] * 100
            values.append(l)

    for i in range(1, len(new_text.split()) + 1):
        sentence = make_keys(new_text, i)
        sentences.append(sentence)

    for i in range(len(sentences)):
        attention = sentences[i]
        for i in range(len(attention)):
            if attention[i] in dictionary.keys():
                l = [dictionary[attention[i]]] * i
                values.append(l)

    if len([item for sublist in values for item in sublist]) == 0:
        bot_input_ids = "I'm sorry, either I didn't understand the question, or it is not part of my domain of expertise... :( Try asking it in another way or using other words. Maybe then I can help you!"
        history.append((message, bot_input_ids))
        return history, history

    else:
        values = [item for sublist in values for item in sublist]
        prediction = mode(values)
        bot_input_ids = answers[int(prediction)-1]
        history.append((message, bot_input_ids))
        return history, history

title = "Basic Chatbot - By Teeny-Tiny Castle 🏰"

head = (
  "<center>"
  "<img src='https://d2vrvpw63099lz.cloudfront.net/do-i-need-a-chatbot/header-chat-box.png' width=400>"
  "This is an example of a rules-based closed domain chatbot. It knows a couple of answers to questions related to AI."
  "<br>"
  "</center>"
)

ref = (
"<center>"
"To see its full version (ML style) of this bot, go to <a href='https://playground.airespucrs.org/aira'>this link</a>."
"</center>")

# create a chat interface
chatbot = gr.Chatbot()

demo = gr.Interface(
    chat,
    ["text", "state"],
    [chatbot, "state"],
    allow_flagging="never",
    title=title,
    description=head,
    article=ref
)

demo.launch()