File size: 9,639 Bytes
3c7a160
 
 
d8137a5
3c7a160
 
 
 
 
 
d8137a5
 
 
 
 
 
 
3c7a160
 
 
 
 
d8137a5
3c7a160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8137a5
3c7a160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8137a5
3c7a160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8137a5
3c7a160
 
d8137a5
 
3c7a160
 
 
 
 
 
 
 
 
 
 
d8137a5
3c7a160
d8137a5
3c7a160
 
 
 
d8137a5
 
 
3c7a160
 
 
 
 
 
 
d8137a5
 
 
3c7a160
 
 
d8137a5
3c7a160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8137a5
 
3c7a160
 
 
d8137a5
 
 
 
 
 
 
 
3c7a160
 
 
 
d8137a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7a160
d8137a5
 
3c7a160
d8137a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7a160
d8137a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7a160
 
 
 
 
 
d8137a5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import pickle
import os
import re
import wordsegment
from g2p_en import G2p

from string import punctuation

from text import symbols

import unicodedata
from builtins import str as unicode
from g2p_en.expand import normalize_numbers
from nltk.tokenize import TweetTokenizer
word_tokenize = TweetTokenizer().tokenize
from nltk import pos_tag

current_file_path = os.path.dirname(__file__)
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
CMU_DICT_FAST_PATH = os.path.join(current_file_path, "cmudict-fast.rep")
CMU_DICT_HOT_PATH = os.path.join(current_file_path, "engdict-hot.rep")
CACHE_PATH = os.path.join(current_file_path, "engdict_cache.pickle")
NAMECACHE_PATH = os.path.join(current_file_path, "namedict_cache.pickle")

arpa = {
    "AH0",
    "S",
    "AH1",
    "EY2",
    "AE2",
    "EH0",
    "OW2",
    "UH0",
    "NG",
    "B",
    "G",
    "AY0",
    "M",
    "AA0",
    "F",
    "AO0",
    "ER2",
    "UH1",
    "IY1",
    "AH2",
    "DH",
    "IY0",
    "EY1",
    "IH0",
    "K",
    "N",
    "W",
    "IY2",
    "T",
    "AA1",
    "ER1",
    "EH2",
    "OY0",
    "UH2",
    "UW1",
    "Z",
    "AW2",
    "AW1",
    "V",
    "UW2",
    "AA2",
    "ER",
    "AW0",
    "UW0",
    "R",
    "OW1",
    "EH1",
    "ZH",
    "AE0",
    "IH2",
    "IH",
    "Y",
    "JH",
    "P",
    "AY1",
    "EY0",
    "OY2",
    "TH",
    "HH",
    "D",
    "ER0",
    "CH",
    "AO1",
    "AE1",
    "AO2",
    "OY1",
    "AY2",
    "IH1",
    "OW0",
    "L",
    "SH",
}


def replace_phs(phs):
    rep_map = {"'": "-"}
    phs_new = []
    for ph in phs:
        if ph in symbols:
            phs_new.append(ph)
        elif ph in rep_map.keys():
            phs_new.append(rep_map[ph])
        else:
            print("ph not in symbols: ", ph)
    return phs_new


def read_dict():
    g2p_dict = {}
    start_line = 49
    with open(CMU_DICT_PATH) as f:
        line = f.readline()
        line_index = 1
        while line:
            if line_index >= start_line:
                line = line.strip()
                word_split = line.split("  ")
                word = word_split[0].lower()

                syllable_split = word_split[1].split(" - ")
                g2p_dict[word] = []
                for syllable in syllable_split:
                    phone_split = syllable.split(" ")
                    g2p_dict[word].append(phone_split)

            line_index = line_index + 1
            line = f.readline()

    return g2p_dict


def read_dict_new():
    g2p_dict = {}
    with open(CMU_DICT_PATH) as f:
        line = f.readline()
        line_index = 1
        while line:
            if line_index >= 57:
                line = line.strip()
                word_split = line.split("  ")
                word = word_split[0].lower()
                g2p_dict[word] = [word_split[1].split(" ")]

            line_index = line_index + 1
            line = f.readline()

    with open(CMU_DICT_FAST_PATH) as f:
        line = f.readline()
        line_index = 1
        while line:
            if line_index >= 0:
                line = line.strip()
                word_split = line.split(" ")
                word = word_split[0].lower()
                if word not in g2p_dict:
                    g2p_dict[word] = [word_split[1:]]

            line_index = line_index + 1
            line = f.readline()

    return g2p_dict

def hot_reload_hot(g2p_dict):
    with open(CMU_DICT_HOT_PATH) as f:
        line = f.readline()
        line_index = 1
        while line:
            if line_index >= 0:
                line = line.strip()
                word_split = line.split(" ")
                word = word_split[0].lower()
                # 自定义发音词直接覆盖字典
                g2p_dict[word] = [word_split[1:]]

            line_index = line_index + 1
            line = f.readline()

    return g2p_dict


def cache_dict(g2p_dict, file_path):
    with open(file_path, "wb") as pickle_file:
        pickle.dump(g2p_dict, pickle_file)


def get_dict():
    if os.path.exists(CACHE_PATH):
        with open(CACHE_PATH, "rb") as pickle_file:
            g2p_dict = pickle.load(pickle_file)
    else:
        g2p_dict = read_dict_new()
        cache_dict(g2p_dict, CACHE_PATH)

    g2p_dict = hot_reload_hot(g2p_dict)

    return g2p_dict


def get_namedict():
    if os.path.exists(NAMECACHE_PATH):
        with open(NAMECACHE_PATH, "rb") as pickle_file:
            name_dict = pickle.load(pickle_file)
    else:
        name_dict = {}

    return name_dict


def text_normalize(text):
    # todo: eng text normalize
    # 适配中文及 g2p_en 标点
    rep_map = {
        "[;::,;]": ",",
        '["’]': "'",
        "。": ".",
        "!": "!",
        "?": "?",
    }
    for p, r in rep_map.items():
        text = re.sub(p, r, text)

    # 来自 g2p_en 文本格式化处理
    # 增加大写兼容
    text = unicode(text)
    text = normalize_numbers(text)
    text = ''.join(char for char in unicodedata.normalize('NFD', text)
                    if unicodedata.category(char) != 'Mn')  # Strip accents
    text = re.sub("[^ A-Za-z'.,?!\-]", "", text)
    text = re.sub(r"(?i)i\.e\.", "that is", text)
    text = re.sub(r"(?i)e\.g\.", "for example", text)

    return text


class en_G2p(G2p):
    def __init__(self):
        super().__init__()
        # 分词初始化
        wordsegment.load()

        # 扩展过时字典, 添加姓名字典
        self.cmu = get_dict()
        self.namedict = get_namedict()

        # 剔除读音错误的几个缩写
        for word in ["AE", "AI", "AR", "IOS", "HUD", "OS"]:
            del self.cmu[word.lower()]

        # 修正多音字
        self.homograph2features["read"] = (['R', 'IY1', 'D'], ['R', 'EH1', 'D'], 'VBP')
        self.homograph2features["complex"] = (['K', 'AH0', 'M', 'P', 'L', 'EH1', 'K', 'S'], ['K', 'AA1', 'M', 'P', 'L', 'EH0', 'K', 'S'], 'JJ')


    def __call__(self, text):
        # tokenization
        words = word_tokenize(text)
        tokens = pos_tag(words)  # tuples of (word, tag)

        # steps
        prons = []
        for o_word, pos in tokens:
            # 还原 g2p_en 小写操作逻辑
            word = o_word.lower()

            if re.search("[a-z]", word) is None:
                pron = [word]
            # 先把单字母推出去
            elif len(word) == 1:
                # 单读 A 发音修正, 这里需要原格式 o_word 判断大写
                if o_word == "A":
                    pron = ['EY1']
                else:
                    pron = self.cmu[word][0]
            # g2p_en 原版多音字处理
            elif word in self.homograph2features:  # Check homograph
                pron1, pron2, pos1 = self.homograph2features[word]
                if pos.startswith(pos1):
                    pron = pron1
                # pos1比pos长仅出现在read
                elif len(pos) < len(pos1) and pos == pos1[:len(pos)]:
                    pron = pron1
                else:
                    pron = pron2
            else:
                # 递归查找预测
                pron = self.qryword(o_word)

            prons.extend(pron)
            prons.extend([" "])

        return prons[:-1]


    def qryword(self, o_word):
        word = o_word.lower()

        # 查字典, 单字母除外
        if len(word) > 1 and word in self.cmu:  # lookup CMU dict
            return self.cmu[word][0]

        # 单词仅首字母大写时查找姓名字典
        if o_word.istitle() and word in self.namedict:
            return self.namedict[word][0]

        # oov 长度小于等于 3 直接读字母
        if len(word) <= 3:
            phones = []
            for w in word:
                # 单读 A 发音修正, 此处不存在大写的情况
                if w == "a":
                    phones.extend(['EY1'])
                else:
                    phones.extend(self.cmu[w][0])
            return phones

        # 尝试分离所有格
        if re.match(r"^([a-z]+)('s)$", word):
            phones = self.qryword(word[:-2])
            # P T K F TH HH 无声辅音结尾 's 发 ['S']
            if phones[-1] in ['P', 'T', 'K', 'F', 'TH', 'HH']:
                phones.extend(['S'])
            # S Z SH ZH CH JH 擦声结尾 's 发 ['IH1', 'Z'] 或 ['AH0', 'Z']
            elif phones[-1] in ['S', 'Z', 'SH', 'ZH', 'CH', 'JH']:
                phones.extend(['AH0', 'Z'])
            # B D G DH V M N NG L R W Y 有声辅音结尾 's 发 ['Z']
            # AH0 AH1 AH2 EY0 EY1 EY2 AE0 AE1 AE2 EH0 EH1 EH2 OW0 OW1 OW2 UH0 UH1 UH2 IY0 IY1 IY2 AA0 AA1 AA2 AO0 AO1 AO2
            # ER ER0 ER1 ER2 UW0 UW1 UW2 AY0 AY1 AY2 AW0 AW1 AW2 OY0 OY1 OY2 IH IH0 IH1 IH2 元音结尾 's 发 ['Z']
            else:
                phones.extend(['Z'])
            return phones

        # 尝试进行分词,应对复合词
        comps = wordsegment.segment(word.lower())

        # 无法分词的送回去预测
        if len(comps)==1:
            return self.predict(word)

        # 可以分词的递归处理
        return [phone for comp in comps for phone in self.qryword(comp)]


_g2p = en_G2p()


def g2p(text):
    # g2p_en 整段推理,剔除不存在的arpa返回
    phone_list = _g2p(text)
    phones = [ph if ph != "<unk>" else "UNK" for ph in phone_list if ph not in [" ", "<pad>", "UW", "</s>", "<s>"]]

    return replace_phs(phones)


if __name__ == "__main__":
    print(g2p("hello"))
    print(g2p(text_normalize("e.g. I used openai's AI tool to draw a picture.")))
    print(g2p(text_normalize("In this; paper, we propose 1 DSPGAN, a GAN-based universal vocoder.")))