File size: 20,014 Bytes
3c7a160
 
 
 
 
 
 
516fd45
 
3c7a160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516fd45
3c7a160
 
 
516fd45
3c7a160
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
from torch.nn.functional import *
from torch.nn.functional import (
    _mha_shape_check,
    _canonical_mask,
    _none_or_dtype,
    _in_projection_packed,
)
from torch.nn import functional as F
import torch
# Tensor = torch.Tensor
# from typing import Callable, List, Optional, Tuple, Union


def multi_head_attention_forward_patched(

    query: Tensor,

    key: Tensor,

    value: Tensor,

    embed_dim_to_check: int,

    num_heads: int,

    in_proj_weight: Optional[Tensor],

    in_proj_bias: Optional[Tensor],

    bias_k: Optional[Tensor],

    bias_v: Optional[Tensor],

    add_zero_attn: bool,

    dropout_p: float,

    out_proj_weight: Tensor,

    out_proj_bias: Optional[Tensor],

    training: bool = True,

    key_padding_mask: Optional[Tensor] = None,

    need_weights: bool = True,

    attn_mask: Optional[Tensor] = None,

    use_separate_proj_weight: bool = False,

    q_proj_weight: Optional[Tensor] = None,

    k_proj_weight: Optional[Tensor] = None,

    v_proj_weight: Optional[Tensor] = None,

    static_k: Optional[Tensor] = None,

    static_v: Optional[Tensor] = None,

    average_attn_weights: bool = True,

    is_causal: bool = False,

    cache=None,

) -> Tuple[Tensor, Optional[Tensor]]:
    r"""

    Args:

        query, key, value: map a query and a set of key-value pairs to an output.

            See "Attention Is All You Need" for more details.

        embed_dim_to_check: total dimension of the model.

        num_heads: parallel attention heads.

        in_proj_weight, in_proj_bias: input projection weight and bias.

        bias_k, bias_v: bias of the key and value sequences to be added at dim=0.

        add_zero_attn: add a new batch of zeros to the key and

                       value sequences at dim=1.

        dropout_p: probability of an element to be zeroed.

        out_proj_weight, out_proj_bias: the output projection weight and bias.

        training: apply dropout if is ``True``.

        key_padding_mask: if provided, specified padding elements in the key will

            be ignored by the attention. This is an binary mask. When the value is True,

            the corresponding value on the attention layer will be filled with -inf.

        need_weights: output attn_output_weights.

            Default: `True`

            Note: `needs_weight` defaults to `True`, but should be set to `False`

            For best performance when attention weights are not nedeeded.

            *Setting needs_weights to `True`

            leads to a significant performance degradation.*

        attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all

            the batches while a 3D mask allows to specify a different mask for the entries of each batch.

        is_causal: If specified, applies a causal mask as attention mask, and ignores

            attn_mask for computing scaled dot product attention.

            Default: ``False``.

            .. warning::

                is_causal is provides a hint that the attn_mask is the

                causal mask.Providing incorrect hints can result in

                incorrect execution, including forward and backward

                compatibility.

        use_separate_proj_weight: the function accept the proj. weights for query, key,

            and value in different forms. If false, in_proj_weight will be used, which is

            a combination of q_proj_weight, k_proj_weight, v_proj_weight.

        q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.

        static_k, static_v: static key and value used for attention operators.

        average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.

            Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect

            when ``need_weights=True.``. Default: True





    Shape:

        Inputs:

        - query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is

          the embedding dimension.

        - key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is

          the embedding dimension.

        - value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is

          the embedding dimension.

        - key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.

          If a FloatTensor is provided, it will be directly added to the value.

          If a BoolTensor is provided, the positions with the

          value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.

        - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.

          3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,

          S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked

          positions. If a BoolTensor is provided, positions with ``True``

          are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor

          is provided, it will be added to the attention weight.

        - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,

          N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.

        - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,

          N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.



        Outputs:

        - attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,

          E is the embedding dimension.

        - attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns

          attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or

          :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and

          :math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per

          head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.

    """
    tens_ops = (
        query,
        key,
        value,
        in_proj_weight,
        in_proj_bias,
        bias_k,
        bias_v,
        out_proj_weight,
        out_proj_bias,
    )
    if has_torch_function(tens_ops):
        return handle_torch_function(
            multi_head_attention_forward,
            tens_ops,
            query,
            key,
            value,
            embed_dim_to_check,
            num_heads,
            in_proj_weight,
            in_proj_bias,
            bias_k,
            bias_v,
            add_zero_attn,
            dropout_p,
            out_proj_weight,
            out_proj_bias,
            training=training,
            key_padding_mask=key_padding_mask,
            need_weights=need_weights,
            attn_mask=attn_mask,
            is_causal=is_causal,
            use_separate_proj_weight=use_separate_proj_weight,
            q_proj_weight=q_proj_weight,
            k_proj_weight=k_proj_weight,
            v_proj_weight=v_proj_weight,
            static_k=static_k,
            static_v=static_v,
            average_attn_weights=average_attn_weights,
            cache=cache,
        )

    is_batched = _mha_shape_check(
        query, key, value, key_padding_mask, attn_mask, num_heads
    )

    # For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
    # is batched, run the computation and before returning squeeze the
    # batch dimension so that the output doesn't carry this temporary batch dimension.
    if not is_batched:
        # unsqueeze if the input is unbatched
        query = query.unsqueeze(1)
        key = key.unsqueeze(1)
        value = value.unsqueeze(1)
        if key_padding_mask is not None:
            key_padding_mask = key_padding_mask.unsqueeze(0)

    # set up shape vars
    tgt_len, bsz, embed_dim = query.shape
    src_len, _, _ = key.shape

    key_padding_mask = _canonical_mask(
        mask=key_padding_mask,
        mask_name="key_padding_mask",
        other_type=_none_or_dtype(attn_mask),
        other_name="attn_mask",
        target_type=query.dtype,
    )

    if is_causal and attn_mask is None:
        raise RuntimeError(
            "Need attn_mask if specifying the is_causal hint. "
            "You may use the Transformer module method "
            "`generate_square_subsequent_mask` to create this mask."
        )

    if is_causal and key_padding_mask is None and not need_weights:
        # when we have a kpm or need weights, we need attn_mask
        # Otherwise, we use the is_causal hint go as is_causal
        # indicator to SDPA.
        attn_mask = None
    else:
        attn_mask = _canonical_mask(
            mask=attn_mask,
            mask_name="attn_mask",
            other_type=None,
            other_name="",
            target_type=query.dtype,
            check_other=False,
        )

        if key_padding_mask is not None:
            # We have the attn_mask, and use that to merge kpm into it.
            # Turn off use of is_causal hint, as the merged mask is no
            # longer causal.
            is_causal = False

    assert (
        embed_dim == embed_dim_to_check
    ), f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
    if isinstance(embed_dim, torch.Tensor):
        # embed_dim can be a tensor when JIT tracing
        head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
    else:
        head_dim = embed_dim // num_heads
    assert (
        head_dim * num_heads == embed_dim
    ), f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
    if use_separate_proj_weight:
        # allow MHA to have different embedding dimensions when separate projection weights are used
        assert (
            key.shape[:2] == value.shape[:2]
        ), f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
    else:
        assert (
            key.shape == value.shape
        ), f"key shape {key.shape} does not match value shape {value.shape}"

    #
    # compute in-projection
    #
    if not use_separate_proj_weight:
        assert (
            in_proj_weight is not None
        ), "use_separate_proj_weight is False but in_proj_weight is None"
        q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
    else:
        assert (
            q_proj_weight is not None
        ), "use_separate_proj_weight is True but q_proj_weight is None"
        assert (
            k_proj_weight is not None
        ), "use_separate_proj_weight is True but k_proj_weight is None"
        assert (
            v_proj_weight is not None
        ), "use_separate_proj_weight is True but v_proj_weight is None"
        if in_proj_bias is None:
            b_q = b_k = b_v = None
        else:
            b_q, b_k, b_v = in_proj_bias.chunk(3)
        q, k, v = _in_projection(
            query,
            key,
            value,
            q_proj_weight,
            k_proj_weight,
            v_proj_weight,
            b_q,
            b_k,
            b_v,
        )
    if cache != None:
        if cache["first_infer"] == 1:
            cache["k"][cache["stage"]] = k
            # print(0,cache["k"].shape)
            cache["v"][cache["stage"]] = v
        else:  ###12个layer每个都要留自己的cache_kv
            # print(1,cache["k"].shape)
            cache["k"][cache["stage"]] = torch.cat(
                [cache["k"][cache["stage"]], k], 0
            )  ##本来时序是1,但是proj的时候可能transpose了所以时序到0维了
            cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]], v], 0)
            # print(2, cache["k"].shape)
            src_len = cache["k"][cache["stage"]].shape[0]
            k = cache["k"][cache["stage"]]
            v = cache["v"][cache["stage"]]
            # if attn_mask is not None:
            #     attn_mask=attn_mask[-1:,]
            # print(attn_mask.shape,attn_mask)
        cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
    # print(2333,cache)
    # prep attention mask

    attn_mask = _canonical_mask(
        mask=attn_mask,
        mask_name="attn_mask",
        other_type=None,
        other_name="",
        target_type=q.dtype,
        check_other=False,
    )

    if attn_mask is not None:
        # ensure attn_mask's dim is 3
        if attn_mask.dim() == 2:
            correct_2d_size = (tgt_len, src_len)
            if attn_mask.shape != correct_2d_size:
                raise RuntimeError(
                    f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
                )
            attn_mask = attn_mask.unsqueeze(0)
        elif attn_mask.dim() == 3:
            correct_3d_size = (bsz * num_heads, tgt_len, src_len)
            if attn_mask.shape != correct_3d_size:
                raise RuntimeError(
                    f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
                )
        else:
            raise RuntimeError(
                f"attn_mask's dimension {attn_mask.dim()} is not supported"
            )

    # add bias along batch dimension (currently second)
    if bias_k is not None and bias_v is not None:
        assert static_k is None, "bias cannot be added to static key."
        assert static_v is None, "bias cannot be added to static value."
        k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
        v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
        if attn_mask is not None:
            attn_mask = pad(attn_mask, (0, 1))
        if key_padding_mask is not None:
            key_padding_mask = pad(key_padding_mask, (0, 1))
    else:
        assert bias_k is None
        assert bias_v is None

    #
    # reshape q, k, v for multihead attention and make em batch first
    #
    q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
    if static_k is None:
        k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
    else:
        # TODO finish disentangling control flow so we don't do in-projections when statics are passed
        assert (
            static_k.size(0) == bsz * num_heads
        ), f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
        assert (
            static_k.size(2) == head_dim
        ), f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
        k = static_k
    if static_v is None:
        v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
    else:
        # TODO finish disentangling control flow so we don't do in-projections when statics are passed
        assert (
            static_v.size(0) == bsz * num_heads
        ), f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
        assert (
            static_v.size(2) == head_dim
        ), f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
        v = static_v

    # add zero attention along batch dimension (now first)
    if add_zero_attn:
        zero_attn_shape = (bsz * num_heads, 1, head_dim)
        k = torch.cat(
            [k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1
        )
        v = torch.cat(
            [v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1
        )
        if attn_mask is not None:
            attn_mask = pad(attn_mask, (0, 1))
        if key_padding_mask is not None:
            key_padding_mask = pad(key_padding_mask, (0, 1))

    # update source sequence length after adjustments
    src_len = k.size(1)

    # merge key padding and attention masks
    if key_padding_mask is not None:
        assert key_padding_mask.shape == (
            bsz,
            src_len,
        ), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
        key_padding_mask = (
            key_padding_mask.view(bsz, 1, 1, src_len)
            .expand(-1, num_heads, -1, -1)
            .reshape(bsz * num_heads, 1, src_len)
        )
        if attn_mask is None:
            attn_mask = key_padding_mask
        else:
            attn_mask = attn_mask + key_padding_mask

    # adjust dropout probability
    if not training:
        dropout_p = 0.0

    #
    # (deep breath) calculate attention and out projection
    #

    if need_weights:
        B, Nt, E = q.shape
        q_scaled = q / math.sqrt(E)

        assert not (
            is_causal and attn_mask is None
        ), "FIXME: is_causal not implemented for need_weights"

        if attn_mask is not None:
            attn_output_weights = torch.baddbmm(
                attn_mask, q_scaled, k.transpose(-2, -1)
            )
        else:
            attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
        attn_output_weights = softmax(attn_output_weights, dim=-1)
        if dropout_p > 0.0:
            attn_output_weights = dropout(attn_output_weights, p=dropout_p)

        attn_output = torch.bmm(attn_output_weights, v)

        attn_output = (
            attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
        )
        attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
        attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))

        # optionally average attention weights over heads
        attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
        if average_attn_weights:
            attn_output_weights = attn_output_weights.mean(dim=1)

        if not is_batched:
            # squeeze the output if input was unbatched
            attn_output = attn_output.squeeze(1)
            attn_output_weights = attn_output_weights.squeeze(0)
        return attn_output, attn_output_weights
    else:
        # attn_mask can be either (L,S) or (N*num_heads, L, S)
        # if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
        # in order to match the input for SDPA of (N, num_heads, L, S)
        if attn_mask is not None:
            if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
                attn_mask = attn_mask.unsqueeze(0)
            else:
                attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)

        q = q.view(bsz, num_heads, tgt_len, head_dim)
        k = k.view(bsz, num_heads, src_len, head_dim)
        v = v.view(bsz, num_heads, src_len, head_dim)

        # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
        attn_output = scaled_dot_product_attention(
            q, k, v, attn_mask, dropout_p, is_causal
        )

        attn_output = (
            attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
        )

        attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
        attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
        if not is_batched:
            # squeeze the output if input was unbatched
            attn_output = attn_output.squeeze(1)
        return attn_output, None