File size: 3,591 Bytes
371b2f1 41f82fa 371b2f1 41f82fa 0fe52f9 41f82fa 0fe52f9 41f82fa 0fe52f9 371b2f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer
model_name = "TinyPixel/Llama-2-7B-bf16-sharded"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
trust_remote_code=True
)
model.config.use_cache = False
"""Let's also load the tokenizer below"""
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
from peft import LoraConfig, get_peft_model
lora_alpha = 16
lora_dropout = 0.1
lora_r = 64
peft_config = LoraConfig(
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
r=lora_r,
bias="none",
task_type="CAUSAL_LM"
)
"""## Loading the trainer
Here we will use the [`SFTTrainer` from TRL library](https://huggingface.co/docs/trl/main/en/sft_trainer) that gives a wrapper around transformers `Trainer` to easily fine-tune models on instruction based datasets using PEFT adapters. Let's first load the training arguments below.
"""
from transformers import TrainingArguments
output_dir = "./results"
per_device_train_batch_size = 4
gradient_accumulation_steps = 4
optim = "paged_adamw_32bit"
save_steps = 100
logging_steps = 10
learning_rate = 2e-4
max_grad_norm = 0.3
max_steps = 100
warmup_ratio = 0.03
lr_scheduler_type = "constant"
training_arguments = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
optim=optim,
save_steps=save_steps,
logging_steps=logging_steps,
learning_rate=learning_rate,
fp16=True,
max_grad_norm=max_grad_norm,
max_steps=max_steps,
warmup_ratio=warmup_ratio,
group_by_length=True,
lr_scheduler_type=lr_scheduler_type,
)
"""Then finally pass everthing to the trainer"""
from trl import SFTTrainer
max_seq_length = 512
trainer = SFTTrainer(
model=model,
train_dataset=dataset,
peft_config=peft_config,
dataset_text_field="text",
max_seq_length=max_seq_length,
tokenizer=tokenizer,
args=training_arguments,
)
"""We will also pre-process the model by upcasting the layer norms in float 32 for more stable training"""
for name, module in trainer.model.named_modules():
if "norm" in name:
module = module.to(torch.float32)
"""## Train the model
Now let's train the model! Simply call `trainer.train()`
"""
trainer.train()
"""During training, the model should converge nicely as follows:

The `SFTTrainer` also takes care of properly saving only the adapters during training instead of saving the entire model.
"""
model_to_save = trainer.model.module if hasattr(trainer.model, 'module') else trainer.model # Take care of distributed/parallel training
model_to_save.save_pretrained("outputs")
lora_config = LoraConfig.from_pretrained('outputs')
model = get_peft_model(model, lora_config)
dataset['text']
text = "Écrire un texte dans un style baroque sur la glace et le feu ### Assistant: Si j'en luis éton"
device = "cuda:0"
inputs = tokenizer(text, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
from huggingface_hub import login
login()
model.push_to_hub("llama2-qlora-finetunined-french")
|