Spaces:
Running
Running
File size: 18,812 Bytes
3d4d894 3e8c07c 3d4d894 dd0ab9f f8c7d9d 3d4d894 07cf2eb 3d4d894 71af695 3790166 71af695 b054e3b 3d4d894 71af695 3d4d894 9ff56a4 3d4d894 ef697d2 3d4d894 7ea369b 3d4d894 c53fc43 9bfe550 3d4d894 c53fc43 9bfe550 3d4d894 9bfe550 c53fc43 9bfe550 3d4d894 9bfe550 3d4d894 6a46ded 3d4d894 c53fc43 71af695 3d4d894 71af695 c882d5b 71af695 c53fc43 3d4d894 2ea3bd8 0cae6b6 6e3a1b8 0cae6b6 5a67d9b 2379311 5a67d9b e97c302 5a67d9b 13e5061 2379311 8604dfb 0d84e52 9bfe550 5a67d9b 3d4d894 f6b9c19 3d4d894 d0613b1 3d4d894 cbc9e9a 3d4d894 c882d5b 3d4d894 b999def 3d4d894 6a46ded 3d4d894 a972e32 c53fc43 d24f993 a972e32 3dbec71 5d49ed1 6fef464 5d49ed1 6fef464 6b1cb2f 5d49ed1 e6abd00 1c669b7 5d49ed1 1af0054 a27c870 161c8b5 1af0054 5981c2d 32be5ef 161c8b5 5981c2d f42f3a8 5981c2d 161c8b5 32be5ef b1dbf88 79067b4 3b9bd52 1fa1dda 3b9bd52 cde7bf0 b054e3b 3d4d894 07cf2eb c53fc43 07cf2eb c53fc43 07cf2eb 3d4d894 5981c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import streamlit as st
# wide layout
st.set_page_config(layout="wide")
from streamlit_drawable_canvas import st_canvas
from PIL import Image
from typing import Union
import random
import numpy as np
import os
import time
from models import make_image_controlnet, make_inpainting
from segmentation import segment_image
from config import HEIGHT, WIDTH, POS_PROMPT, NEG_PROMPT, COLOR_MAPPING, map_colors, map_colors_rgb
from palette import COLOR_MAPPING_CATEGORY
from preprocessing import preprocess_seg_mask, get_image, get_mask
from explanation import make_inpainting_explanation, make_regeneration_explanation, make_segmentation_explanation
def on_upload() -> None:
"""Upload image to the canvas."""
if 'input_image' in st.session_state and st.session_state['input_image'] is not None:
image = Image.open(st.session_state['input_image']).convert('RGB')
st.session_state['initial_image'] = image
if 'seg' in st.session_state:
del st.session_state['seg']
if 'unique_colors' in st.session_state:
del st.session_state['unique_colors']
if 'output_image' in st.session_state:
del st.session_state['output_image']
def make_image_row(image_0, image_1):
col_0, col_1 = st.columns(2)
with col_0:
st.image(image_0, use_column_width=True)
with col_1:
st.image(image_1, use_column_width=True)
def check_reset_state() -> bool:
"""Check whether the UI elements need to be reset
Returns:
bool: True if the UI elements need to be reset, False otherwise
"""
if ('reset_canvas' in st.session_state and st.session_state['reset_canvas']):
st.session_state['reset_canvas'] = False
return True
st.session_state['reset_canvas'] = False
return False
def move_image(source: Union[str, Image.Image],
dest: str,
rerun: bool = True,
remove_state: bool = True) -> None:
"""Move image from source to destination.
Args:
source (Union[str, Image.Image]): source image
dest (str): destination image location
rerun (bool, optional): rerun streamlit. Defaults to True.
remove_state (bool, optional): remove the canvas state. Defaults to True.
"""
source_image = source if isinstance(source, Image.Image) else st.session_state[source]
if remove_state:
st.session_state['reset_canvas'] = True
if 'seg' in st.session_state:
del st.session_state['seg']
if 'unique_colors' in st.session_state:
del st.session_state['unique_colors']
st.session_state[dest] = source_image
st.session_state['dest'] = source_image
if rerun:
st.experimental_rerun()
def on_change_radio() -> None:
"""Reset the UI elements when the radio button is changed."""
st.session_state['reset_canvas'] = True
def make_canvas_dict(canvas_color, brush, paint_mode, _reset_state):
canvas_dict = dict(
fill_color=canvas_color,
stroke_color=canvas_color,
background_color="#FFFFFF",
background_image=st.session_state['initial_image'] if 'initial_image' in st.session_state else None,
stroke_width=brush,
initial_drawing={'version': '4.4.0', 'objects': []} if _reset_state else None,
update_streamlit=True,
height=512,
width=512,
drawing_mode=paint_mode,
key="canvas",
)
return canvas_dict
def make_prompt_row():
col_0_0, col_0_1 = st.columns(2)
with col_0_0:
st.text_input(label="Positive prompt", value="a photograph of a room, interior design, 4k, high resolution", key='positive_prompt')
with col_0_1:
st.text_input(label="Negative prompt", value="lowres, watermark, banner, logo, watermark, contactinfo, text, deformed, blurry, blur, out of focus, out of frame, surreal, ugly", key='negative_prompt')
def make_sidebar():
with st.sidebar:
input_image = st.file_uploader("", type=["png", "jpg"], key='input_image', on_change=on_upload)
generation_mode = st.selectbox("Generation mode", ["Regenerate",
"Segmentation",
"Inpainting"], on_change=on_change_radio)
if generation_mode == "Segmentation":
paint_mode = st.sidebar.selectbox("Painting mode", ("freedraw", "polygon"))
if paint_mode == "freedraw":
brush = st.slider("Stroke width", 5, 140, 100, key='slider_seg')
else:
brush = 5
category_chooser = st.sidebar.selectbox("Filter on category", list(
COLOR_MAPPING_CATEGORY.keys()), index=0, key='category_chooser')
chosen_colors = list(COLOR_MAPPING_CATEGORY[category_chooser].keys())
color_chooser = st.sidebar.selectbox(
"Choose a color", chosen_colors, index=0, format_func=map_colors, key='color_chooser'
)
elif generation_mode == "Regenerate":
color_chooser = "rgba(0, 0, 0, 0.0)"
paint_mode = 'freedraw'
brush = 0
else:
paint_mode = st.sidebar.selectbox("Painting mode", ("freedraw", "polygon"))
if paint_mode == "freedraw":
brush = st.slider("Stroke width", 5, 140, 100, key='slider_seg')
else:
brush = 5
color_chooser = "#000000"
return input_image, generation_mode, brush, color_chooser, paint_mode
def make_output_image():
if 'output_image' in st.session_state:
output_image = st.session_state['output_image']
if isinstance(output_image, np.ndarray):
output_image = Image.fromarray(output_image)
if isinstance(output_image, Image.Image):
output_image = output_image.resize((512, 512))
else:
output_image = Image.new('RGB', (512, 512), (255, 255, 255))
st.write("#### Output image")
st.image(output_image, width=512)
if st.button("Move to input image"):
move_image('output_image', 'initial_image', remove_state=True, rerun=True)
def make_editing_canvas(canvas_color, brush, _reset_state, generation_mode, paint_mode):
st.write("#### Input image")
canvas_dict = make_canvas_dict(
canvas_color=canvas_color,
paint_mode=paint_mode,
brush=brush,
_reset_state=_reset_state
)
if generation_mode == "Segmentation":
canvas = st_canvas(
**canvas_dict,
)
if st.button("generate image", key='generate_button'):
image = get_image()
print("Preparing image segmentation")
real_seg = segment_image(Image.fromarray(image))
mask, seg = preprocess_seg_mask(canvas, real_seg)
with st.spinner(text="Generating image"):
print("Making image")
result_image = make_image_controlnet(image=image,
mask_image=mask,
controlnet_conditioning_image=seg,
positive_prompt=st.session_state['positive_prompt'],
negative_prompt=st.session_state['negative_prompt'],
seed=random.randint(0, 100000) # nosec
)
if isinstance(result_image, np.ndarray):
result_image = Image.fromarray(result_image)
st.session_state['output_image'] = result_image
elif generation_mode == "Regenerate":
canvas = st_canvas(
**canvas_dict,
)
if 'seg' not in st.session_state:
with st.spinner(text="Preparing image segmentation"):
image = get_image()
real_seg = np.array(segment_image(Image.fromarray(image)))
st.session_state['seg'] = real_seg
if 'unique_colors' not in st.session_state:
real_seg = st.session_state['seg']
unique_colors = np.unique(real_seg.reshape(-1, real_seg.shape[2]), axis=0)
unique_colors = [tuple(color) for color in unique_colors]
st.session_state['unique_colors'] = unique_colors
with st.expander("Explanation", expanded=True):
st.write("This mode allows you to choose which objects you want to re-generate in the image. "
"Use the selection dropdown to add or remove objects. If you are ready, press the generate button"
" to generate the image, which can take up to 30 seconds. If you want to improve the generated image, click"
" the 'move image to input' button."
)
chosen_colors = st.multiselect(
label="Choose which concepts you want to regenerate in the image",
options=st.session_state['unique_colors'],
key='chosen_colors',
default=st.session_state['unique_colors'],
format_func=map_colors_rgb,
)
if st.button("generate image", key='generate_button'):
image = get_image()
print(chosen_colors)
segmentation = st.session_state['seg']
mask = np.zeros_like(segmentation)
for color in chosen_colors:
# if the color is in the segmentation, set mask to 1
mask[np.where((segmentation == color).all(axis=2))] = 1
with st.spinner(text="Generating image"):
result_image = make_image_controlnet(image=image,
mask_image=mask,
controlnet_conditioning_image=segmentation,
positive_prompt=st.session_state['positive_prompt'],
negative_prompt=st.session_state['negative_prompt'],
seed=random.randint(0, 100000) # nosec
)
if isinstance(result_image, np.ndarray):
result_image = Image.fromarray(result_image)
st.session_state['output_image'] = result_image
elif generation_mode == "Inpainting":
image = get_image()
canvas = st_canvas(
**canvas_dict,
)
if st.button("generate images", key='generate_button'):
canvas_mask = canvas.image_data
if not isinstance(canvas_mask, np.ndarray):
canvas_mask = np.array(canvas_mask)
mask = get_mask(canvas_mask)
with st.spinner(text="Generating new images"):
print("Making image")
result_image = make_inpainting(positive_prompt=st.session_state['positive_prompt'],
image=Image.fromarray(image),
mask_image=mask,
negative_prompt=st.session_state['negative_prompt'],
)
if isinstance(result_image, np.ndarray):
result_image = Image.fromarray(result_image)
st.session_state['output_image'] = result_image
def main():
# center text
st.write("## Controlnet sprint - interior design", unsafe_allow_html=True)
input_image, generation_mode, brush, color_chooser, paint_mode = make_sidebar()
# check if there is an input_image
if not ('initial_image' in st.session_state and st.session_state['initial_image'] is not None):
st.success("Upload an image to start")
st.write("Welcome to the interior design controlnet demo! "
"You can start by uploading a picture of your room, after which you will see "
"a good variety of options to edit your current room to generate the room of your dreams! "
"You can choose between inpainting, Segmentation and re-generating objects, which "
"use our custom trained controlnet model. The main idea is that you can iterate over the "
"generated images, because you will rarely get something perfect in one step (although it's possible). "
"We added functionality to load in the generated image into the input, so you can keep "
"changing the image until you are satisfied."
)
with st.expander("Useful information", expanded=True):
st.write("### About the dataset")
st.write("To make this demo as good as possible, our team spend a lot of time training a custom model. "
"We used the LAION5B dataset to build our custom dataset, which contains 130k images of 15 types of rooms "
"in almost 30 design styles. After fetching all these images, we started adding metadata such as "
"captions (from the BLIP captioning model) and segmentation maps (from the HuggingFace UperNetForSemanticSegmentation model). "
)
st.write("### About the model")
st.write(
"These were then used to train the controlnet model to generate quality interior design images by using "
"the segmentation maps and prompts as conditioning information for the model. "
"By training on segmentation maps, the enduser has a very finegrained control over which objects they "
"want to place in their room. "
"The resulting model is then used in a community pipeline that supports image2image and inpainting, "
"so the user can keep elements of their room and change specific parts of the image."
""
)
st.write("### Trivia")
st.write("To enable the features in the demo, we calculate the underlying segmentation maps and categories that "
"are present in the image. This allows us to hide some of the manual work for the user, and "
"by doing this, the users don't need to make a segmentation map in an external tool. Everything needed can be done within this demo."
)
# st.write("### News: Fondant - an open source data-centric framework for Foundation model finetuning")
# st.write("The ML6 team is proud to announce that we are open sourcing our Fondant framework, which is a "
# "data-centric framework that allows you to prepare large scale multimodal datasets with ease. We have implemented the components "
# "that we used to train this controlnet model in Fondant as an example pipeline, and we are excited to see what you can do with it! In the future we will add a whole library of plug-and-play data preparation components, such as different ML models and filtering steps, in addition to dataset scraping components that connect to LAION5B."
# )
# st.write("The framework is built on top of kubeflow pipelines and abstracts all the complexity of efficient storing and moving of large datasets, so you can focus on implemented just that piece of code that you need without worrying about the rest. We also build it to run on each Cloud provider or VM. You can find the code on our github page: https://github.com/ml6team/fondant.")
st.write("### Testing images")
st.write("If you don't have any pictures close, you can use one of these images to test the model by clicking on the 'use example X' buttons")
st.session_state['example_image_0'] = Image.open("content/example_0.png")
st.session_state['example_image_1'] = Image.open("content/example_1.jpg")
st.session_state['example_image_2'] = Image.open("content/example_2.jpg")
st.session_state['example_image_3'] = Image.open("content/example_3.jpg")
col_im_0, col_im_1 = st.columns(2)
with col_im_0:
st.image(st.session_state['example_image_0'], caption="Example image 1", use_column_width=True)
if st.button("Use example 1"):
move_image('example_image_0', 'initial_image', remove_state=True, rerun=True)
st.image(st.session_state['example_image_2'], caption="Example image 3", use_column_width=True)
if st.button("Use example 3"):
move_image('example_image_2', 'initial_image', remove_state=True, rerun=True)
with col_im_1:
st.image(st.session_state['example_image_1'], caption="Example image 2", use_column_width=True)
if st.button("Use example 2"):
move_image('example_image_1', 'initial_image', remove_state=True, rerun=True)
st.image(st.session_state['example_image_3'], caption="Example image 4", use_column_width=True)
if st.button("Use example 4"):
move_image('example_image_3', 'initial_image', remove_state=True, rerun=True)
st.write("## Generated examples")
make_image_row(Image.open("content/output_1.png"), Image.open("content/regen_example.png"))
make_image_row(Image.open("content/keep background 2.png"), Image.open("content/output_0.png"))
make_image_row(Image.open("content/segmentation window.png"), Image.open("content/output_3.png"))
st.write("## Example video")
st.write("### Video 1")
st.video(open('content/controlnet_sprint_demo.mp4', 'rb').read())
st.write("### Video 2")
st.video(open('content/controlnet_demo_video_2.mp4', 'rb').read())
else:
make_prompt_row()
_reset_state = check_reset_state()
if generation_mode == "Inpainting":
make_inpainting_explanation()
elif generation_mode == "Segmentation":
make_segmentation_explanation()
elif generation_mode == "Regenerate":
make_regeneration_explanation()
col1, col2 = st.columns(2)
with col1:
make_editing_canvas(canvas_color=color_chooser,
brush=brush,
_reset_state=_reset_state,
generation_mode=generation_mode,
paint_mode=paint_mode
)
with col2:
make_output_image()
if __name__ == "__main__":
main()
|