Spaces:
Running
Running
File size: 12,629 Bytes
3d4d894 dd0ab9f f8c7d9d 3d4d894 07cf2eb 3d4d894 71af695 3790166 71af695 3d4d894 71af695 3d4d894 ef697d2 3d4d894 7ea369b 3d4d894 9bfe550 3d4d894 9bfe550 3d4d894 9bfe550 3d4d894 9bfe550 3d4d894 71af695 3d4d894 71af695 c882d5b 71af695 3d4d894 2ea3bd8 0cae6b6 6e3a1b8 0cae6b6 5a67d9b 2379311 5a67d9b e97c302 5a67d9b 13e5061 2379311 8604dfb 0d84e52 9bfe550 5a67d9b 3d4d894 f6b9c19 3d4d894 d0613b1 3d4d894 cbc9e9a 3d4d894 c882d5b 3d4d894 b999def 3d4d894 07cf2eb 3d4d894 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from PIL import Image
from typing import Union
import random
import numpy as np
import os
import time
from models import make_image_controlnet, make_inpainting
from segmentation import segment_image
from config import HEIGHT, WIDTH, POS_PROMPT, NEG_PROMPT, COLOR_MAPPING, map_colors, map_colors_rgb
from palette import COLOR_MAPPING_CATEGORY
from preprocessing import preprocess_seg_mask, get_image, get_mask
from explanation import make_inpainting_explanation, make_regeneration_explanation, make_segmentation_explanation
# wide layout
st.set_page_config(layout="wide")
def on_upload() -> None:
"""Upload image to the canvas."""
if 'input_image' in st.session_state and st.session_state['input_image'] is not None:
image = Image.open(st.session_state['input_image']).convert('RGB')
st.session_state['initial_image'] = image
if 'seg' in st.session_state:
del st.session_state['seg']
if 'unique_colors' in st.session_state:
del st.session_state['unique_colors']
if 'output_image' in st.session_state:
del st.session_state['output_image']
def check_reset_state() -> bool:
"""Check whether the UI elements need to be reset
Returns:
bool: True if the UI elements need to be reset, False otherwise
"""
if ('reset_canvas' in st.session_state and st.session_state['reset_canvas']):
st.session_state['reset_canvas'] = False
return True
st.session_state['reset_canvas'] = False
return False
def move_image(source: Union[str, Image.Image],
dest: str,
rerun: bool = True,
remove_state: bool = True) -> None:
"""Move image from source to destination.
Args:
source (Union[str, Image.Image]): source image
dest (str): destination image location
rerun (bool, optional): rerun streamlit. Defaults to True.
remove_state (bool, optional): remove the canvas state. Defaults to True.
"""
source_image = source if isinstance(source, Image.Image) else st.session_state[source]
if remove_state:
st.session_state['reset_canvas'] = True
if 'seg' in st.session_state:
del st.session_state['seg']
if 'unique_colors' in st.session_state:
del st.session_state['unique_colors']
st.session_state[dest] = source_image
if rerun:
st.experimental_rerun()
def on_change_radio() -> None:
"""Reset the UI elements when the radio button is changed."""
st.session_state['reset_canvas'] = True
def make_canvas_dict(canvas_color, brush, paint_mode, _reset_state):
canvas_dict = dict(
fill_color=canvas_color,
stroke_color=canvas_color,
background_color="#FFFFFF",
background_image=st.session_state['initial_image'] if 'initial_image' in st.session_state else None,
stroke_width=brush,
initial_drawing={'version': '4.4.0', 'objects': []} if _reset_state else None,
update_streamlit=True,
height=512,
width=512,
drawing_mode=paint_mode,
key="canvas",
)
return canvas_dict
def make_prompt_row():
col_0_0, col_0_1 = st.columns(2)
with col_0_0:
st.text_input(label="Positive prompt", value="a photograph of a room, interior design, 4k, high resolution", key='positive_prompt')
with col_0_1:
st.text_input(label="Negative prompt", value="lowres, watermark, banner, logo, watermark, contactinfo, text, deformed, blurry, blur, out of focus, out of frame, surreal, ugly", key='negative_prompt')
def make_sidebar():
with st.sidebar:
input_image = st.file_uploader("", type=["png", "jpg"], key='input_image', on_change=on_upload)
generation_mode = st.selectbox("Generation mode", ["Re-generate objects",
"Segmentation conditioning",
"Inpainting"], on_change=on_change_radio)
if generation_mode == "Segmentation conditioning":
paint_mode = st.sidebar.selectbox("Painting mode", ("freedraw", "polygon"))
if paint_mode == "freedraw":
brush = st.slider("Stroke width", 5, 140, 100, key='slider_seg')
else:
brush = 5
category_chooser = st.sidebar.selectbox("Filter on category", list(
COLOR_MAPPING_CATEGORY.keys()), index=0, key='category_chooser')
chosen_colors = list(COLOR_MAPPING_CATEGORY[category_chooser].keys())
color_chooser = st.sidebar.selectbox(
"Choose a color", chosen_colors, index=0, format_func=map_colors, key='color_chooser'
)
elif generation_mode == "Re-generate objects":
color_chooser = "rgba(0, 0, 0, 0.0)"
paint_mode = 'freedraw'
brush = 0
else:
paint_mode = st.sidebar.selectbox("Painting mode", ("freedraw", "polygon"))
if paint_mode == "freedraw":
brush = st.slider("Stroke width", 5, 140, 100, key='slider_seg')
else:
brush = 5
color_chooser = "#000000"
return input_image, generation_mode, brush, color_chooser, paint_mode
def make_output_image():
if 'output_image' in st.session_state:
output_image = st.session_state['output_image']
if isinstance(output_image, np.ndarray):
output_image = Image.fromarray(output_image)
if isinstance(output_image, Image.Image):
output_image = output_image.resize((512, 512))
else:
output_image = Image.new('RGB', (512, 512), (255, 255, 255))
st.write("#### Output image")
st.image(output_image, width=512)
if st.button("Move to input image"):
move_image('output_image', 'initial_image', remove_state=True, rerun=True)
def make_editing_canvas(canvas_color, brush, _reset_state, generation_mode, paint_mode):
st.write("#### Input image")
canvas_dict = make_canvas_dict(
canvas_color=canvas_color,
paint_mode=paint_mode,
brush=brush,
_reset_state=_reset_state
)
if generation_mode == "Segmentation conditioning":
canvas = st_canvas(
**canvas_dict,
)
if st.button("generate image", key='generate_button'):
image = get_image()
print("Preparing image segmentation")
real_seg = segment_image(Image.fromarray(image))
mask, seg = preprocess_seg_mask(canvas, real_seg)
with st.spinner(text="Generating image"):
print("Making image")
result_image = make_image_controlnet(image=image,
mask_image=mask,
controlnet_conditioning_image=seg,
positive_prompt=st.session_state['positive_prompt'],
negative_prompt=st.session_state['negative_prompt'],
seed=random.randint(0, 100000) # nosec
)
if isinstance(result_image, np.ndarray):
result_image = Image.fromarray(result_image)
st.session_state['output_image'] = result_image
elif generation_mode == "Re-generate objects":
canvas = st_canvas(
**canvas_dict,
)
if 'seg' not in st.session_state:
with st.spinner(text="Preparing image segmentation"):
image = get_image()
real_seg = np.array(segment_image(Image.fromarray(image)))
st.session_state['seg'] = real_seg
if 'unique_colors' not in st.session_state:
real_seg = st.session_state['seg']
unique_colors = np.unique(real_seg.reshape(-1, real_seg.shape[2]), axis=0)
unique_colors = [tuple(color) for color in unique_colors]
st.session_state['unique_colors'] = unique_colors
with st.expander("Explanation", expanded=True):
st.write("This mode allows you to choose which objects you want to re-generate in the image. "
"Use the selection dropdown to add or remove objects. If you are ready, press the generate button"
" to generate the image, which can take up to 30 seconds. If you want to improve the generated image, click"
" the 'move image to input' button."
)
chosen_colors = st.multiselect(
label="Choose which concepts you want to regenerate in the image",
options=st.session_state['unique_colors'],
key='chosen_colors',
default=st.session_state['unique_colors'],
format_func=map_colors_rgb,
)
if st.button("generate image", key='generate_button'):
image = get_image()
print(chosen_colors)
segmentation = st.session_state['seg']
mask = np.zeros_like(segmentation)
for color in chosen_colors:
# if the color is in the segmentation, set mask to 1
mask[np.where((segmentation == color).all(axis=2))] = 1
with st.spinner(text="Generating image"):
result_image = make_image_controlnet(image=image,
mask_image=mask,
controlnet_conditioning_image=segmentation,
positive_prompt=st.session_state['positive_prompt'],
negative_prompt=st.session_state['negative_prompt'],
seed=random.randint(0, 100000) # nosec
)
if isinstance(result_image, np.ndarray):
result_image = Image.fromarray(result_image)
st.session_state['output_image'] = result_image
elif generation_mode == "Inpainting":
image = get_image()
canvas = st_canvas(
**canvas_dict,
)
if st.button("generate images", key='generate_button'):
canvas_mask = canvas.image_data
if not isinstance(canvas_mask, np.ndarray):
canvas_mask = np.array(canvas_mask)
mask = get_mask(canvas_mask)
with st.spinner(text="Generating new images"):
print("Making image")
result_image = make_inpainting(positive_prompt=st.session_state['positive_prompt'],
image=Image.fromarray(image),
mask_image=mask,
negative_prompt=st.session_state['negative_prompt'],
)
if isinstance(result_image, np.ndarray):
result_image = Image.fromarray(result_image)
st.session_state['output_image'] = result_image
def main():
# center text
st.write("## Controlnet sprint - interior design", unsafe_allow_html=True)
input_image, generation_mode, brush, color_chooser, paint_mode = make_sidebar()
# check if there is an input_image
if not ('input_image' in st.session_state and st.session_state['input_image'] is not None):
print("Image not present")
st.success("Upload an image to start")
else:
make_prompt_row()
_reset_state = check_reset_state()
if generation_mode == "Inpainting":
make_inpainting_explanation()
elif generation_mode == "Segmentation conditioning":
make_segmentation_explanation()
elif generation_mode == "Re-generate objects":
make_regeneration_explanation()
col1, col2 = st.columns(2)
with col1:
make_editing_canvas(canvas_color=color_chooser,
brush=brush,
_reset_state=_reset_state,
generation_mode=generation_mode,
paint_mode=paint_mode
)
with col2:
make_output_image()
if __name__ == "__main__":
main() |