File size: 7,622 Bytes
5d345b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import pinecone
import gradio as gr
from openai import OpenAI
from typing import Callable
import google.generativeai as genai
from huggingface_hub import hf_hub_download


def download_prompt(name_prompt: str) -> str:
    """
    Downloads prompt from HuggingFace Hub
    :param name_prompt: name of the file
    :return: text of the file
    """
    hf_hub_download(
        repo_id=os.environ.get('DATA'), repo_type='dataset', filename=f"{name_prompt}.txt",
        token=os.environ.get('HUB_TOKEN'), local_dir="prompts"
    )
    with open(f'prompts/{name_prompt}.txt', mode='r', encoding='utf-8') as infile:
        prompt = infile.read()
    return prompt


def start_chat(model: str) -> tuple[gr.helpers, gr.helpers, gr.helpers, gr.helpers]:
    """
    Shows the chatbot interface and hides the selection of the model.
    Returns gradio helpers (gr.update())
    :param model: name of the model to use
    :return: visible=False, visible=True, visible=True, value=selected_model
    """
    no_visible = gr.update(visible=False)
    visible = gr.update(visible=True)
    title = gr.update(value=f"# {model}")
    return no_visible, visible, visible, title


def restart_chat() -> tuple[gr.helpers, gr.helpers, gr.helpers, list, str]:
    """
    Shows the selection of the model, hides the chatbot interface and restarts the chatbot.
    Returns gradio helpers (gr.update())
    :return: visible=True, visible=False, visible=False, empty list, empty string
    """
    no_visible = gr.update(visible=False)
    visible = gr.update(visible=True)
    return visible, no_visible, no_visible, [], ""


def get_answer(chatbot: list[tuple[str, str]], message: str, model: str) -> tuple[list[tuple[str, str]], str]:
    """
    Calls the model and returns the answer
    :param chatbot: message history
    :param message: user input
    :param model: name of the model
    :return: chatbot answer
    """
    # Setup which function will be called (depends on the model)
    if COMPANIES[model]['real name'] == 'Gemini':
        call_model = _call_google
    else:
        call_model = _call_openai

    # Get standalone question
    standalone_question = _get_standalone_question(chatbot, message, call_model)

    # Get context
    context = _get_context(standalone_question)

    # Get answer from the Chatbot
    prompt = PROMPT_GENERAL.replace('CONTEXT', context)
    answer = call_model(prompt, chatbot, message)

    # Add the new answer to the history
    chatbot.append((message, answer))

    return chatbot, ""


def _get_standalone_question(
        chat_history: list[tuple[str, str]], message: str, call_model: Callable[[str, list, str], str]
) -> str:
    """
    To get a better context a standalone question is obtained for each question
    :param chat_history: message history
    :param message: user input
    :param call_model: name of the model
    :return: standalone phrase
    """
    # Format the message history like: Human: blablablá \nAssistant: blablablá
    history = ''
    for i, (user, bot) in enumerate(chat_history):
        if i == 0:
            history += f'Assistant: {bot}\n'
        else:
            history += f'Human: {user}\n'
            history += f'Assistant: {bot}\n'

    # Add history and question to the prompt
    prompt = PROMPT_STANDALONE.replace('HISTORY', history)
    question = f'Follow-up message: {message}'

    return call_model(prompt, [], question)


def _get_embedding(text: str) -> list[float]:
    """
    :param text: input text
    :return: embedding
    """
    response = OPENAI_CLIENT.embeddings.create(
        input=text,
        model='text-embedding-ada-002'
    )
    return response.data[0].embedding


def _get_context(question: str) -> str:
    """
    Get the 10 nearest vectors to the given input
    :param question: standalone question
    :return: formatted context with the nearest vectors
    """
    result = INDEX.query(
        vector=_get_embedding(question),
        top_k=10,
        include_metadata=True,
        namespace=f'{CLIENT}-context'
    )['matches']

    context = ''
    for r in result:
        context += r['metadata']['Text'] + '\n\n'
    return context


def _call_openai(prompt: str, chat_history: list[tuple[str, str]], question: str) -> str:
    """
    Calls ChatGPT 4
    :param prompt: prompt with the context or the question (in the case of the standalone one)
    :param chat_history: history of the conversation
    :param question: user input
    :return: chatbot answer
    """
    # Format the message history to the one used by OpenAI
    msg_history = [{'role': 'system', 'content': prompt}]
    for i, (user, bot) in enumerate(chat_history):
        if i == 0:
            msg_history.append({'role': 'assistant', 'content': bot})
        else:
            msg_history.append({'role': 'user', 'content': user})
            msg_history.append({'role': 'assistant', 'content': bot})
    msg_history.append({'role': 'user', 'content': question})

    # Call ChatGPT 4
    response = OPENAI_CLIENT.chat.completions.create(
        model='gpt-4-turbo-preview',
        temperature=0.5,
        messages=msg_history
    )
    return response.choices[0].message.content


def _call_google(prompt: str, chat_history: list[tuple[str, str]], question: str) -> str:
    """
    Calls Gemini
    :param prompt: prompt with the context or the question (in the case of the standalone one)
    :param chat_history: history of the conversation
    :param question: user input
    :return: chatbot answer
    """
    # Format the message history to the one used by Google
    history = [
        {'role': 'user', 'parts': [prompt]},
        {'role': 'model', 'parts': 'Excelente! Estoy super lista para ayudarte en lo que necesites'}
    ]
    for i, (user, bot) in enumerate(chat_history):
        if i == 0:
            history.append({'role': 'model', 'parts': bot})
        else:
            history.append({'role': 'user', 'parts': user})
            history.append({'role': 'model', 'parts': bot})
    convo = GEMINI.start_chat(history=history)

    # Call Gemini
    convo.send_message(question)
    return convo.last.text


# ----------------------------------------- Setup constants and models ------------------------------------------------
OPENAI_CLIENT = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
pinecone.init(api_key=os.getenv('PINECONE_API_KEY'), environment=os.getenv("PINECONE_ENVIRONMENT"))
INDEX = pinecone.Index(os.getenv('PINECONE_INDEX'))
CLIENT = os.getenv('CLIENT')


# Setup Gemini
generation_config = {
  "temperature": 0.9,
  "top_p": 1,
  "top_k": 1,
  "max_output_tokens": 2048,
}
safety_settings = [
  {
    "category": "HARM_CATEGORY_HARASSMENT",
    "threshold": "BLOCK_MEDIUM_AND_ABOVE"
  },
  {
    "category": "HARM_CATEGORY_HATE_SPEECH",
    "threshold": "BLOCK_MEDIUM_AND_ABOVE"
  },
  {
    "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
    "threshold": "BLOCK_ONLY_HIGH"
  },
  {
    "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
    "threshold": "BLOCK_MEDIUM_AND_ABOVE"
  },
]
GEMINI = genai.GenerativeModel(
    model_name="gemini-1.0-pro", generation_config=generation_config, safety_settings=safety_settings
)


# Download and open prompts from HuggingFace Hub
os.makedirs('prompts', exist_ok=True)
PROMPT_STANDALONE = download_prompt('standalone')
PROMPT_GENERAL = download_prompt('general')


# Constants used in the app
COMPANIES = {
    'Model G': {'company': 'Google', 'real name': 'Gemini'},
    'Model C': {'company': 'OpenAI', 'real name': 'ChatGPT 4'},
}
MODELS = list(COMPANIES.keys())