File size: 4,024 Bytes
9c9c79e
0a94f19
 
 
 
 
 
 
 
 
9c9c79e
 
 
 
 
 
 
 
 
 
0a94f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
853f5ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a94f19
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from fastai.vision.all import *
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import logging
import tempfile
from pathlib import Path
import firebase_admin
from firebase_admin import credentials, firestore, storage
from pydantic import BaseModel

# Load the pre-trained model
learn = load_learner('model.pkl')

# Define categories and map them to indices
searches = ['formal', 'casual', 'athletic']
searches = sorted(searches)  # Ensure the categories are in sorted order
values = [i for i in range(0, len(searches))]
class_dict = dict(zip(searches, values))

# Set up logging
logging.basicConfig(level=logging.DEBUG,
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Initialize Firebase
try:
    cred = credentials.Certificate("serviceAccountKey.json")
    firebase_app = firebase_admin.initialize_app(cred, {
        'storageBucket': 'future-forge-60d3f.appspot.com'
    })
    db = firestore.client()
    bucket = storage.bucket(app=firebase_app)
    logger.info("Firebase initialized successfully")
except Exception as e:
    logger.error(f"Failed to initialize Firebase: {str(e)}")

app = FastAPI()

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


# Define the input model
class FileProcess(BaseModel):
    file_path: str


@app.post("/process")
async def process_file(file_data: FileProcess):
    logger.info(f"Processing file from Firebase Storage: {file_data.file_path}")

    try:
        # Get the file from Firebase Storage
        blob = bucket.blob(file_data.file_path)

        # Create a temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file_data.file_path.split('.')[-1]}") as tmp_file:
            blob.download_to_filename(tmp_file.name)
            tmp_file_path = Path(tmp_file.name)

        logger.info(f"File downloaded temporarily at: {tmp_file_path}")

        file_type = file_data.file_path.split('.')[-1].lower()

        try:
            if file_type in ['jpg', 'jpeg', 'png', 'bmp']:
                output = process_video(str(tmp_file_path))
                result = {"type": "image", "data": {"result": output}}
            else:
                raise HTTPException(status_code=400, detail="Unsupported file type")

            logger.info(f"Processing complete. Result: {result}")

            # Store result in Firebase
            try:
                doc_ref = db.collection('results').add(result)
                return {"message": "File processed successfully", "result": result}
            except Exception as e:
                logger.error(f"Failed to store result in Firebase: {str(e)}")
                return {"message": "File processed successfully, but failed to store in Firebase", "result": result,
                        "error": str(e)}

        finally:
            # Clean up the temporary file
            tmp_file_path.unlink()

    except Exception as e:
        logger.error(f"Error processing file: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error processing file: {str(e)}")


def process_video(video_path):
    # Load the image from the provided path
    img = PILImage.create(video_path)
    
    # Make the prediction
    classification, _, probs = learn.predict(img)
    
    # Convert the prediction to a confidence dictionary
    confidences = {label: float(probs[i]) for i, label in enumerate(class_dict)}
    
    # If classification is not formal, return 'informal'
    if classification != 'formal':
        informal_confidence = sum(confidences[label] for label in class_dict if label != 'formal')
        return {'informal': informal_confidence}
    else:
        return {'formal': confidences['formal']}

if __name__ == "__main__":
    logger.info("Starting the Face Emotion Recognition API")
    uvicorn.run(app, host="0.0.0.0", port=8000)