File size: 13,980 Bytes
9d6f383
 
 
 
 
15727b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d6f383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import streamlit as st
import datetime
import numpy as np
import gspread
from google.oauth2 import service_account
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.vectorstores.faiss import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.text_splitter import CharacterTextSplitter
from langchain import OpenAI, VectorDBQA
from langdetect import detect
from googletrans import Translator
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFLoader
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.document_loaders import TextLoader
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts.prompt import PromptTemplate
from langchain.callbacks import get_openai_callback
import openai
from datetime import datetime
import pandas as pd
import pytz
from hashlib import sha256
import os

# Add this function to create a Google Sheets service
def create_google_sheets_service(json_credentials_path, scopes):
    creds = service_account.Credentials.from_service_account_file(json_credentials_path).with_scopes(scopes)
    return gspread.authorize(creds)

        
from datetime import datetime
import pytz
import requests

def get_user_ip():
    try:
        response = requests.get("https://api.ipify.org?format=json")
        ip = response.json()['ip']
    except:
        ip = "Unknown"
    return ip


from google.api_core.retry import Retry
from google.api_core import retry


def write_data_to_google_sheet(service, spreadsheet_url, sheet_name, data):
    sheet = service.open_by_url(spreadsheet_url).worksheet(sheet_name)

    # Add header row
    header_row = ["Questions", "Answers", "Timestamp", "User IP"]
    for i, header in enumerate(header_row, start=1):
        sheet.update_cell(1, i, header)

    # Set timezone to Saudi Arabia time
    saudi_timezone = pytz.timezone("Asia/Riyadh")

    # Get user's IP address
    user_ip = get_user_ip()

    # Find the next empty row
    next_row = len(sheet.get_all_values()) + 1

    # Write data to the Google Sheet
    for i, item in enumerate(data, start=next_row):
        sheet.update_cell(i, 1, item['query'])
        sheet.update_cell(i, 2, item['response'])
        saudi_time = datetime.now(saudi_timezone).strftime("%Y-%m-%d %H:%M:%S")
        sheet.update_cell(i, 3, saudi_time)
        sheet.update_cell(i, 4, user_ip)







# Add these lines to the beginning of your `app` function
json_credentials_path = 'credentials.json'  # Replace with the path to your JSON credentials file
scopes = ['https://www.googleapis.com/auth/spreadsheets']

service = create_google_sheets_service(json_credentials_path, scopes)
spreadsheet_url = 'https://docs.google.com/spreadsheets/d/1R1AUf0Bzk5fLTpV6vk023DW7FV19kBT3e1lPWysDW2Q/edit#gid=1555077198'
sheet_name = 'Sheet1'  # Replace with the name of the sheet where you want to store the data
        




#@title State of Union Text
#state_of_the_union = """ txt_file"""

# Environment Vars
#os.environ["OPENAI_API_KEY"] = openai_api_key
import os
os.environ["OPENAI_API_KEY"] = openai_api_key
os.environ['OPENAI_API_KEY'] = st.secrets['OPENAI_API_KEY']




def create_hashed_password(password):
    return sha256(password.encode('utf-8')).hexdigest()

def login():
    st.title('Please Login')

    entered_username = st.text_input('Username')
    entered_password = st.text_input('Password', type='password')

    if st.button('Login'):
        names = ['User', 'Customer']
        usernames = ['warba', 'Warba']
        passwords = ['warba123', 'warba123']

        hashed_passwords = [create_hashed_password(password) for password in passwords]

        for name, username, hashed_password in zip(names, usernames, hashed_passwords):
            if username == entered_username and hashed_password == create_hashed_password(entered_password):
                st.session_state["authentication_status"] = True
                st.session_state["name"] = name
                break
        else:
            st.session_state["authentication_status"] = False

        if st.session_state.get("authentication_status", None):
            return True
        elif st.session_state["authentication_status"] == False:
            st.error('Sorry, wrong login credentials')
            return False
        elif st.session_state["authentication_status"] == None:
            st.warning('Please enter your username and password')
            return False
    else:
        return False



#text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
#texts = text_splitter.split_text(state_of_the_union)
#loader = PyPDFLoader("warba_5_6.pdf")
#documents = loader.load()
#texts = text_splitter.split_documents(documents)

#################
qa_template = """
        You are a helpful AI assistant named Q&A bot developed and created by Warba Bank Developers. The user gives you a file its content is represented by the following pieces of context, use them to answer the question at the end.
        If you don't know the answer, just say you don't know. Do NOT try to make up an answer.
        If the question is not related to the context, politely respond that you are tuned to only answer questions that are related to the context.
        Use as much detail as possible when responding.

        context: {context}
        =========
        question: {question}
        ======
        """
QA_PROMPT = PromptTemplate(template=qa_template, input_variables=["context","question" ])

#loader = CSVLoader("Warba_QA_bot_full_dataset_June_14_csv.csv", csv_args = {"delimiter": ','})
#documents = loader.load()
loader = CSVLoader(file_path="Warba_QA_bot_full_dataset_June_14_csv_updated.csv", encoding="utf-8",csv_args={'delimiter': ',',})
data = loader.load()
#text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000,chunk_overlap  = 0,length_function = len,)
embeddings = OpenAIEmbeddings()
vectors = FAISS.from_documents(data, embeddings)
chain = ConversationalRetrievalChain.from_llm(llm = ChatOpenAI(temperature=0.0,model_name='gpt-3.5-turbo', openai_api_key=st.secrets['OPENAI_API_KEY']),
retriever=vectors.as_retriever(),max_tokens_limit=4097,combine_docs_chain_kwargs={"prompt": QA_PROMPT})
#faissIndex = FAISS.from_documents(docs, OpenAIEmbeddings())
#faissIndex.save_local("faiss_warba_docs")
#from langchain.chains import RetrievalQA
#from langchain.chat_models import ChatOpenAI
#chatbot = RetrievalQA.from_chain_type(llm=ChatOpenAI(openai_api_key=st.secrets['OPENAI_API_KEY'],temperature=0, model_name="gpt-3.5-turbo", max_tokens=256), chain_type="stuff", retriever=FAISS.load_local("faiss_warba_docs", OpenAIEmbeddings()).as_retriever(search_type="similarity", search_kwargs={"k":1}))


###embeddings = OpenAIEmbeddings()
###text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
###texts = text_splitter.split_text(state_of_the_union)
###vectorstore = FAISS.from_texts(texts, embeddings)

#import numpy as np

#text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
#texts = text_splitter.split_text(state_of_the_union)

#embeddings = OpenAIEmbeddings()
#vectorstore = FAISS.from_texts(texts, embeddings)


#db = Chroma.from_documents(texts, embeddings)
#retriever = db.as_retriever(search_type="similarity", search_kwargs={"k":2})
#llm = OpenAI(model_name='gpt-3.5-turbo',temperature=0, max_tokens=256 )
#qa = VectorDBQA.from_chain_type(llm, chain_type="stuff", vectorstore=vectorstore)
from langchain.chat_models import ChatOpenAI
#qa = VectorDBQA.from_chain_type(llm=OpenAI(model_name='gpt-3.5-turbo',temperature=0.2,max_tokens=256), chain_type="stuff", vectorstore=vectorstore)
#qa = VectorDBQA.from_chain_type(llm=ChatOpenAI(model_name='gpt-3.5-turbo',temperature=0.2,max_tokens=256), chain_type="stuff", vectorstore=vectorstore)
#qa = RetrievalQA.from_chain_type(llm=OpenAI(model_name='gpt-3.5-turbo'), chain_type="stuff", retriever=retriever, return_source_documents=True)
from langchain.chains import load_chain

#translator = OpenAITranslator()
from googletrans import Translator

#chain = load_chain("lc://chains/vector-db-qa/stuff/chain.json", vectorstore=vectorstore)
#from langchain.chains.question_answering import load_qa_chain
#chain = load_qa_chain(llm=OpenAI(model_name='gpt-3.5-turbo'), chain_type="stuff")


from googletrans import Translator

def translate_to_arabic(text):
    translator = Translator()
    result = translator.translate(text, dest='ar')
    return result.text



translator = Translator()


from langdetect import detect


import time
import streamlit as st
from datetime import datetime
import pytz

#def run_chain(query):
    #return chain.run(query)

def run_chain(chat_history, question):
    return chain.run({'chat_history': chat_history, 'question': question})


def clear_conversation():
    if (
        st.button("🧹 Clear conversation", use_container_width=True)
        or "history" not in st.session_state
    ):
        st.session_state.history = []

def download_conversation():
    conversation_df = pd.DataFrame(
        st.session_state.history, columns=["timestamp", "query", "response"]
    )
    csv = conversation_df.to_csv(index=False)

    st.download_button(
        label="💾 Download conversation",
        data=csv,
        file_name=f"conversation_{datetime.now().strftime('%Y%m%d%H%M')}.csv",
        mime="text/csv",
        use_container_width=True,
    )

def app():
    st.set_page_config(page_title="Q&A Bot", page_icon=":guardsman:")

    st.markdown("""
        <style>
            body {
                background-color: #f0f2f6;
            }
            .title {
                font-size: 25px;
                font-weight: bold;
                color: #151f6d;
                text-align: center;
            }
            .response-block {
                background-color: #151f6d;
                padding: 10px;
                color: white;
                border-radius: 5px;
                margin-top: 10px;
                text-align: center;
                font-size: 16px;  # Increase font size by one degree
            }
            .stTextInput>div>div>input {
                background-color: white;
            }
            .stButton>button {
                width: 100%;
                color: white;
                background-color: #151f6d;
            }
        </style>
    """, unsafe_allow_html=True)

    st.markdown('<div class="title">Questions and Answers Bot for Warba Bank.</div>', unsafe_allow_html=True)

    st.write("")  # Empty line for spacing
    st.write("")  # Empty line for spacing

    sidebar = st.sidebar
    show_history = sidebar.checkbox("Show conversation history", value=False)
    
    # Add the checkbox for multi-line input in the sidebar
    multiline = sidebar.checkbox('Use multi-line input')

    with sidebar.expander("More options"):
        clear_conversation()
        download_conversation()

    col1, col2 = st.columns([3,1])
    with col1:
        # Depending on the state of the checkbox, display a single-line input or a multi-line input
        if multiline:
            query = st.text_area("Enter a question and get an answer from Q&A Bot:")
        else:
            query = st.text_input("Enter a question and get an answer from Q&A Bot:")

    thinking_message_text = col1.empty()  # Create a placeholder for the 'Thinking...' text
    thinking_message_bar = col1.empty()  # Create a placeholder for the progress bar

    response_block = col1.empty()  # Create a placeholder for the response block

    with col2:
        st.write("")  # Empty line for spacing
        st.write("")  # Empty line for spacing
        if st.button("Ask"):
            if query:
                # Start progress bar
                progress_bar = thinking_message_bar.progress(0)
                for i in range(100):
                    # Update the progress bar with each iteration.
                    time.sleep(0.01)  # add delay for demonstration
                    progress_bar.progress(i + 1)
                    thinking_message_text.markdown(f'Thinking... {i+1}%', unsafe_allow_html=True)
                
                sa_time = datetime.now(pytz.timezone('Asia/Riyadh'))
                timestamp = sa_time.strftime('%Y-%m-%d %H:%M:%S')
                #response = run_chain(query)
                response = run_chain("", query)


                # Clear the progress bar and the 'Thinking...' text
                thinking_message_bar.empty()
                thinking_message_text.empty()

                # Display the response
                response_block.markdown(f'<div class="response-block"> Answer: {response}</div>', unsafe_allow_html=True)
                conversation_item = {
                    'timestamp': timestamp,
                    'query': query,
                    'response': response
                }
                st.session_state.history.append(conversation_item)


                # Write data to Google Sheet
                write_data_to_google_sheet(service, spreadsheet_url, sheet_name, [conversation_item])

    # Only show conversation history if checkbox is checked
    if show_history:
        st.write('\n\n## Conversation history')
        for item in reversed(st.session_state.history):
            st.write(f'### Question: {item["query"]}')
            st.write(f'### Answer: {item["response"]}')
            st.write('---')

            
if __name__ == "__main__":
    #st.set_page_config(page_title="My Streamlit App")
    if 'authentication_status' not in st.session_state or st.session_state["authentication_status"] == False:
        login_successful = login()
        if login_successful:
            st.experimental_rerun()
    else:
        app()