Spaces:
Runtime error
Runtime error
File size: 13,980 Bytes
9d6f383 15727b7 9d6f383 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import streamlit as st
import datetime
import numpy as np
import gspread
from google.oauth2 import service_account
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.vectorstores.faiss import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.text_splitter import CharacterTextSplitter
from langchain import OpenAI, VectorDBQA
from langdetect import detect
from googletrans import Translator
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFLoader
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.document_loaders import TextLoader
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts.prompt import PromptTemplate
from langchain.callbacks import get_openai_callback
import openai
from datetime import datetime
import pandas as pd
import pytz
from hashlib import sha256
import os
# Add this function to create a Google Sheets service
def create_google_sheets_service(json_credentials_path, scopes):
creds = service_account.Credentials.from_service_account_file(json_credentials_path).with_scopes(scopes)
return gspread.authorize(creds)
from datetime import datetime
import pytz
import requests
def get_user_ip():
try:
response = requests.get("https://api.ipify.org?format=json")
ip = response.json()['ip']
except:
ip = "Unknown"
return ip
from google.api_core.retry import Retry
from google.api_core import retry
def write_data_to_google_sheet(service, spreadsheet_url, sheet_name, data):
sheet = service.open_by_url(spreadsheet_url).worksheet(sheet_name)
# Add header row
header_row = ["Questions", "Answers", "Timestamp", "User IP"]
for i, header in enumerate(header_row, start=1):
sheet.update_cell(1, i, header)
# Set timezone to Saudi Arabia time
saudi_timezone = pytz.timezone("Asia/Riyadh")
# Get user's IP address
user_ip = get_user_ip()
# Find the next empty row
next_row = len(sheet.get_all_values()) + 1
# Write data to the Google Sheet
for i, item in enumerate(data, start=next_row):
sheet.update_cell(i, 1, item['query'])
sheet.update_cell(i, 2, item['response'])
saudi_time = datetime.now(saudi_timezone).strftime("%Y-%m-%d %H:%M:%S")
sheet.update_cell(i, 3, saudi_time)
sheet.update_cell(i, 4, user_ip)
# Add these lines to the beginning of your `app` function
json_credentials_path = 'credentials.json' # Replace with the path to your JSON credentials file
scopes = ['https://www.googleapis.com/auth/spreadsheets']
service = create_google_sheets_service(json_credentials_path, scopes)
spreadsheet_url = 'https://docs.google.com/spreadsheets/d/1R1AUf0Bzk5fLTpV6vk023DW7FV19kBT3e1lPWysDW2Q/edit#gid=1555077198'
sheet_name = 'Sheet1' # Replace with the name of the sheet where you want to store the data
#@title State of Union Text
#state_of_the_union = """ txt_file"""
# Environment Vars
#os.environ["OPENAI_API_KEY"] = openai_api_key
import os
os.environ["OPENAI_API_KEY"] = openai_api_key
os.environ['OPENAI_API_KEY'] = st.secrets['OPENAI_API_KEY']
def create_hashed_password(password):
return sha256(password.encode('utf-8')).hexdigest()
def login():
st.title('Please Login')
entered_username = st.text_input('Username')
entered_password = st.text_input('Password', type='password')
if st.button('Login'):
names = ['User', 'Customer']
usernames = ['warba', 'Warba']
passwords = ['warba123', 'warba123']
hashed_passwords = [create_hashed_password(password) for password in passwords]
for name, username, hashed_password in zip(names, usernames, hashed_passwords):
if username == entered_username and hashed_password == create_hashed_password(entered_password):
st.session_state["authentication_status"] = True
st.session_state["name"] = name
break
else:
st.session_state["authentication_status"] = False
if st.session_state.get("authentication_status", None):
return True
elif st.session_state["authentication_status"] == False:
st.error('Sorry, wrong login credentials')
return False
elif st.session_state["authentication_status"] == None:
st.warning('Please enter your username and password')
return False
else:
return False
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
#texts = text_splitter.split_text(state_of_the_union)
#loader = PyPDFLoader("warba_5_6.pdf")
#documents = loader.load()
#texts = text_splitter.split_documents(documents)
#################
qa_template = """
You are a helpful AI assistant named Q&A bot developed and created by Warba Bank Developers. The user gives you a file its content is represented by the following pieces of context, use them to answer the question at the end.
If you don't know the answer, just say you don't know. Do NOT try to make up an answer.
If the question is not related to the context, politely respond that you are tuned to only answer questions that are related to the context.
Use as much detail as possible when responding.
context: {context}
=========
question: {question}
======
"""
QA_PROMPT = PromptTemplate(template=qa_template, input_variables=["context","question" ])
#loader = CSVLoader("Warba_QA_bot_full_dataset_June_14_csv.csv", csv_args = {"delimiter": ','})
#documents = loader.load()
loader = CSVLoader(file_path="Warba_QA_bot_full_dataset_June_14_csv_updated.csv", encoding="utf-8",csv_args={'delimiter': ',',})
data = loader.load()
#text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000,chunk_overlap = 0,length_function = len,)
embeddings = OpenAIEmbeddings()
vectors = FAISS.from_documents(data, embeddings)
chain = ConversationalRetrievalChain.from_llm(llm = ChatOpenAI(temperature=0.0,model_name='gpt-3.5-turbo', openai_api_key=st.secrets['OPENAI_API_KEY']),
retriever=vectors.as_retriever(),max_tokens_limit=4097,combine_docs_chain_kwargs={"prompt": QA_PROMPT})
#faissIndex = FAISS.from_documents(docs, OpenAIEmbeddings())
#faissIndex.save_local("faiss_warba_docs")
#from langchain.chains import RetrievalQA
#from langchain.chat_models import ChatOpenAI
#chatbot = RetrievalQA.from_chain_type(llm=ChatOpenAI(openai_api_key=st.secrets['OPENAI_API_KEY'],temperature=0, model_name="gpt-3.5-turbo", max_tokens=256), chain_type="stuff", retriever=FAISS.load_local("faiss_warba_docs", OpenAIEmbeddings()).as_retriever(search_type="similarity", search_kwargs={"k":1}))
###embeddings = OpenAIEmbeddings()
###text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
###texts = text_splitter.split_text(state_of_the_union)
###vectorstore = FAISS.from_texts(texts, embeddings)
#import numpy as np
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
#texts = text_splitter.split_text(state_of_the_union)
#embeddings = OpenAIEmbeddings()
#vectorstore = FAISS.from_texts(texts, embeddings)
#db = Chroma.from_documents(texts, embeddings)
#retriever = db.as_retriever(search_type="similarity", search_kwargs={"k":2})
#llm = OpenAI(model_name='gpt-3.5-turbo',temperature=0, max_tokens=256 )
#qa = VectorDBQA.from_chain_type(llm, chain_type="stuff", vectorstore=vectorstore)
from langchain.chat_models import ChatOpenAI
#qa = VectorDBQA.from_chain_type(llm=OpenAI(model_name='gpt-3.5-turbo',temperature=0.2,max_tokens=256), chain_type="stuff", vectorstore=vectorstore)
#qa = VectorDBQA.from_chain_type(llm=ChatOpenAI(model_name='gpt-3.5-turbo',temperature=0.2,max_tokens=256), chain_type="stuff", vectorstore=vectorstore)
#qa = RetrievalQA.from_chain_type(llm=OpenAI(model_name='gpt-3.5-turbo'), chain_type="stuff", retriever=retriever, return_source_documents=True)
from langchain.chains import load_chain
#translator = OpenAITranslator()
from googletrans import Translator
#chain = load_chain("lc://chains/vector-db-qa/stuff/chain.json", vectorstore=vectorstore)
#from langchain.chains.question_answering import load_qa_chain
#chain = load_qa_chain(llm=OpenAI(model_name='gpt-3.5-turbo'), chain_type="stuff")
from googletrans import Translator
def translate_to_arabic(text):
translator = Translator()
result = translator.translate(text, dest='ar')
return result.text
translator = Translator()
from langdetect import detect
import time
import streamlit as st
from datetime import datetime
import pytz
#def run_chain(query):
#return chain.run(query)
def run_chain(chat_history, question):
return chain.run({'chat_history': chat_history, 'question': question})
def clear_conversation():
if (
st.button("🧹 Clear conversation", use_container_width=True)
or "history" not in st.session_state
):
st.session_state.history = []
def download_conversation():
conversation_df = pd.DataFrame(
st.session_state.history, columns=["timestamp", "query", "response"]
)
csv = conversation_df.to_csv(index=False)
st.download_button(
label="💾 Download conversation",
data=csv,
file_name=f"conversation_{datetime.now().strftime('%Y%m%d%H%M')}.csv",
mime="text/csv",
use_container_width=True,
)
def app():
st.set_page_config(page_title="Q&A Bot", page_icon=":guardsman:")
st.markdown("""
<style>
body {
background-color: #f0f2f6;
}
.title {
font-size: 25px;
font-weight: bold;
color: #151f6d;
text-align: center;
}
.response-block {
background-color: #151f6d;
padding: 10px;
color: white;
border-radius: 5px;
margin-top: 10px;
text-align: center;
font-size: 16px; # Increase font size by one degree
}
.stTextInput>div>div>input {
background-color: white;
}
.stButton>button {
width: 100%;
color: white;
background-color: #151f6d;
}
</style>
""", unsafe_allow_html=True)
st.markdown('<div class="title">Questions and Answers Bot for Warba Bank.</div>', unsafe_allow_html=True)
st.write("") # Empty line for spacing
st.write("") # Empty line for spacing
sidebar = st.sidebar
show_history = sidebar.checkbox("Show conversation history", value=False)
# Add the checkbox for multi-line input in the sidebar
multiline = sidebar.checkbox('Use multi-line input')
with sidebar.expander("More options"):
clear_conversation()
download_conversation()
col1, col2 = st.columns([3,1])
with col1:
# Depending on the state of the checkbox, display a single-line input or a multi-line input
if multiline:
query = st.text_area("Enter a question and get an answer from Q&A Bot:")
else:
query = st.text_input("Enter a question and get an answer from Q&A Bot:")
thinking_message_text = col1.empty() # Create a placeholder for the 'Thinking...' text
thinking_message_bar = col1.empty() # Create a placeholder for the progress bar
response_block = col1.empty() # Create a placeholder for the response block
with col2:
st.write("") # Empty line for spacing
st.write("") # Empty line for spacing
if st.button("Ask"):
if query:
# Start progress bar
progress_bar = thinking_message_bar.progress(0)
for i in range(100):
# Update the progress bar with each iteration.
time.sleep(0.01) # add delay for demonstration
progress_bar.progress(i + 1)
thinking_message_text.markdown(f'Thinking... {i+1}%', unsafe_allow_html=True)
sa_time = datetime.now(pytz.timezone('Asia/Riyadh'))
timestamp = sa_time.strftime('%Y-%m-%d %H:%M:%S')
#response = run_chain(query)
response = run_chain("", query)
# Clear the progress bar and the 'Thinking...' text
thinking_message_bar.empty()
thinking_message_text.empty()
# Display the response
response_block.markdown(f'<div class="response-block"> Answer: {response}</div>', unsafe_allow_html=True)
conversation_item = {
'timestamp': timestamp,
'query': query,
'response': response
}
st.session_state.history.append(conversation_item)
# Write data to Google Sheet
write_data_to_google_sheet(service, spreadsheet_url, sheet_name, [conversation_item])
# Only show conversation history if checkbox is checked
if show_history:
st.write('\n\n## Conversation history')
for item in reversed(st.session_state.history):
st.write(f'### Question: {item["query"]}')
st.write(f'### Answer: {item["response"]}')
st.write('---')
if __name__ == "__main__":
#st.set_page_config(page_title="My Streamlit App")
if 'authentication_status' not in st.session_state or st.session_state["authentication_status"] == False:
login_successful = login()
if login_successful:
st.experimental_rerun()
else:
app()
|