File size: 1,836 Bytes
c5ad68c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr
import torch
from unsloth import FastLanguageModel

# --- Load Model ---
max_seq_length = 4096
dtype = torch.float16
load_in_4bit = True

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "Ahmed-El-Sharkawy/Meta-Llama-3.1-8B-alpaca",  # directly load your uploaded model
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
)

FastLanguageModel.for_inference(model)  # Enable 2x faster inference

# Define Alpaca prompt
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input_text}
### Response:
"""

def generate_response(instruction, input_text):
    prompt = alpaca_prompt.format(instruction=instruction, input_text=input_text)
    inputs = tokenizer([prompt], return_tensors="pt").to(model.device)

    outputs = model.generate(
        **inputs,
        max_new_tokens=512,
        use_cache=True
    )

    decoded_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)
    response = decoded_output[0].replace("<|begin_of_text|>", "").replace("<|end_of_text|>", "").strip()

    # Optional: Remove the prompt part if model echoes it back
    if prompt.strip() in response:
        response = response.replace(prompt.strip(), "").strip()

    return response

# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# 🌟 LLaMA-3 Alpaca Fine-tuned Chatbot")
    with gr.Row():
        instruction = gr.Textbox(label="Instruction", lines=2)
        input_text = gr.Textbox(label="Input", lines=5)
    output = gr.Textbox(label="Response", lines=10)
    btn = gr.Button("Generate")
    btn.click(generate_response, [instruction, input_text], output)

demo.launch()