Spaces:
Running
Running
File size: 10,314 Bytes
769686e 765deca 769686e 13cf1a2 769686e 13cf1a2 769686e 765deca 769686e 765deca 769686e 13cf1a2 62acfee 0bfb006 13cf1a2 769686e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
from flask import Flask
from flask import request
from flask import render_template
from flask import redirect
from flask import jsonify
from flask import send_from_directory
from flask import send_file
import json
import numpy as np
import pandas as pd
import datetime
from functools import wraps
import os
import pickle
import requests, zipfile, io
from flask_cors import CORS, cross_origin
import re
import time
from openai import OpenAI
assistant_id = os.environ.get('assistant_id')
client = OpenAI(api_key = os.environ.get('api_key'))
my_assistant = client.beta.assistants.retrieve(assistant_id)
assistant_report_id = os.environ.get('assistant_report_id')
client_report = OpenAI(api_key = os.environ.get('api_key'))
my_assistant_report = client_report.beta.assistants.retrieve(assistant_report_id)
app = Flask(__name__)
cors = CORS(app)
#CORS(app, resources={r"/api/*": {"origins": "https://agritech.unisi.it/"}})
app.config['CORS_HEADERS'] = 'Content-Type'
@app.route("/")
def flask_app():
return '<br>' \
'<h3><a href="http://www.studiogotti.altervista.org/dashboard/wp2-agritech/index.php" target="_blank">Hai acceso il server! Bene!😉 Adesso vai alla pagina ESG4AGRI!!</a></h3>' \
@app.route('/scoring',methods=['POST','GET'])
@cross_origin()
def scoring():
input_json = request.get_json()
#dati di input:
percentili = pd.DataFrame({
'variabile': ['ini_fatt', 'form_fatt', 'perc_donne_dip', 'perc_dip', 'en_fatt', 'ghg_fatt', 'acqu_fatt', 'perc_donne_gov', '%_spesa_forn_loc'],
'percentile_0.05': [0,0.3846,0,0,0,0.000025,0.000030,0,10],
'percentile_0.95': [5,25,80,100,0.5,0.1875,0.01,100,100]
})
mediane = pd.DataFrame({
'variabile': ['perc_donne_gov', '%_spesa_forn_loc', 'acqu_fatt', 'en_fatt', 'form_fatt', 'ghg_fatt', 'ini_fatt', 'perc_dip', 'perc_donne_dip'],
'Centro': [30,70,0.001,0.0475,3.75,0.0003,0,59.72972973,33.33333333],
'Nord-est': [30,70,0.000708647,0.04,4.5,0.001073757,0,56.5942029,33.33333333],
'Nord-ovest':[30,70,0.000386698,0.033333333,4.54,0.125,0,60,31.81818182],
'Sud_Isole': [20,60,0.000833333,0.06,4,0.06,0,60,33.33333333]
})
#mapping delle variabili
variable_mapping = {
'fatturato': 'fatturato',
'iniziativeConsumo': 'n_iniz_cons_sosteni',
'oreFormazione': 'tot_ore_formazione',
'percentualeDipendenti': 'perc_donne_dip',
'spesaFornitori': '%_spesa_forn_loc',
'percentualeDonne': 'perc_dip',
'energiaElettrica': 'consumo_energia_kw',
'emissioniGHG': 'tons_ghg',
'consumoAcqua': 'consumo_acqua_m3',
'donneGovernance': 'perc_donne_gov',
'region': 'region',
'numeroDipendenti': 'n_tot_dip',
"dataInizio": "dataInizio",
"dataFine": "dataFine",
"testo":"testo"
}
transformed_json = {variable_mapping[key]: value for key, value in input_json.items()}
# Rimozione delle chiavi non desiderate
transformed_json.pop('region', None)
transformed_json.pop('dataInizio', None)
transformed_json.pop('dataFine', None)
transformed_json.pop('testo', None)
#costruzione dataframe
df = pd.DataFrame([{k: float(v) for k, v in transformed_json.items()}])
print(df)
#costruzione indicatori
df['ini_fatt'] = df['n_iniz_cons_sosteni']
df['form_fatt'] = df['tot_ore_formazione'] / df['n_tot_dip']
df['en_fatt'] = df['consumo_energia_kw'] / df['fatturato']
df['ghg_fatt'] = df['tons_ghg'] / df['fatturato']
df['acqu_fatt'] = df['consumo_acqua_m3'] / df['fatturato']
#controllo dati
for index, row in percentili.iterrows():
var = row['variabile']
if var in df.columns:
df[var] = np.clip(df[var], row['percentile_0.05'], row['percentile_0.95'])
#inizio costruzione
percentile_value = percentili.loc[percentili['variabile'] == 'ini_fatt', 'percentile_0.95'].iloc[0]
df['ini_fatt2'] = (df['ini_fatt'] / percentile_value) * 100
#variabili_effetto_positivo=['form_fatt','perc_donne_dip','perc_dip','perc_donne_gov','%_spesa_forn_loc']
variabili_effetto_positivo=['form_fatt','perc_dip','%_spesa_forn_loc']
variabili_effetto_positivo_donne=['perc_donne_dip','perc_donne_gov']
variabili_effetto_negativo=['en_fatt','ghg_fatt','acqu_fatt']
reg=input_json['region']
regione=reg
for d in variabili_effetto_positivo:
#print(d)
percentile_05=percentili.loc[percentili['variabile'] == d, 'percentile_0.05'].iloc[0]
percentile_95=percentili.loc[percentili['variabile'] == d, 'percentile_0.95'].iloc[0]
mediana=mediane.loc[percentili['variabile'] == d, regione].iloc[0]
df[d+'2'] = np.where(
df[d] <= mediana,
((df[d] - percentile_05) / (mediana - percentile_05)) * 50,
50+((df[d] - mediana) / (percentile_95 - mediana)) * 50
)
for d in variabili_effetto_positivo_donne:
percentile_05=percentili.loc[percentili['variabile'] == d, 'percentile_0.05'].iloc[0]
percentile_95=percentili.loc[percentili['variabile'] == d, 'percentile_0.95'].iloc[0]
# Apply the logic to compute the new column d+'2'
df[d+'2'] = np.where(
df[d] <= 50,
((df[d] - percentile_05) / (50 - percentile_05)) * 100,
((percentile_95 - df[d]) / (percentile_95 - 50)) * 100
)
for d in variabili_effetto_negativo:
#print(d)
percentile_05=percentili.loc[percentili['variabile'] == d, 'percentile_0.05'].iloc[0]
percentile_95=percentili.loc[percentili['variabile'] == d, 'percentile_0.95'].iloc[0]
mediana=mediane.loc[percentili['variabile'] == d, regione].iloc[0]
df[d+'2'] = np.where(
df[d] > mediana,
((percentile_95 - df[d]) / (percentile_95 -mediana)) * 50,
((mediana - df[d]) / (mediana - percentile_05)) * 50 + 50
)
# Calcolo dello score ponderato
weights = {'ini_fatt2': 3.778, 'form_fatt2': 4.488, 'perc_donne_dip2': 4.394, 'perc_dip2': 4.394, 'en_fatt2': 4.534, 'ghg_fatt2': 4.534, 'acqu_fatt2': 4.563, 'perc_donne_gov2':4.709}
total_weight = sum(weights.values())
var=['ini_fatt2','form_fatt2', 'perc_donne_dip2', 'perc_dip2', 'en_fatt2', 'ghg_fatt2', 'acqu_fatt2', 'perc_donne_gov2']
#score1
score=0
for v in var:
score=score+df[v].iloc[0]*weights[v]
df['score']=score/total_weight
output1=df['score'].iloc[0]
#score2
var211=['form_fatt2', 'perc_donne_dip2', 'perc_dip2', 'en_fatt2', 'ghg_fatt2', 'acqu_fatt2']
var2=['ini_fatt2','%_spesa_forn_loc2', 'perc_donne_gov2','score211']
#score1
score211=0
total_weight211=0
for v in var211:
score211=score211+df[v].iloc[0]*weights[v]
total_weight211=total_weight211+weights[v]
df['score211']=score211/total_weight211
weights2 = {'ini_fatt2': 4.823, 'perc_donne_gov2':4.709,'score211':4.583, '%_spesa_forn_loc2':4.665}
score2=0
total_weight2=0
for v in var2:
score2=score2+df[v].iloc[0]*weights2[v]
total_weight2=total_weight2+weights2[v]
df['score2']=score2/total_weight2
output2=df['score2'].iloc[0]
print(output1,output2) # Output the data received for debugging
dati=[]
w='ok'
d={}
d['score1']=str(output1)
d['score2']=str(output2)
d['score_ambito_1']=df['ini_fatt2'].iloc[0]
d['score_ambito_2']=df['score211'].iloc[0]
d['score_ambito_3']=df['%_spesa_forn_loc2'].iloc[0]
d['score_ambito_4']=df['perc_donne_gov2'].iloc[0]
varExp=['form_fatt2', 'perc_donne_dip2', 'perc_dip2', 'en_fatt2', 'ghg_fatt2', 'acqu_fatt2','ini_fatt2','%_spesa_forn_loc2', 'perc_donne_gov2']
for v in varExp:
d[v]=df[v].iloc[0]
dati.append(d)
output=dati
response = jsonify(output)
return response
@app.route('/bot',methods=['POST','GET'])
@cross_origin()
def bot():
dati=[]
input_json = request.get_json()
domanda=input_json['domanda']
thread_id=input_json['thread']
if thread_id=='nn':
thread = client.beta.threads.create()
thread_id=thread.id
messaggio = client.beta.threads.messages.create(
thread_id = thread_id,
role = "user",
content = domanda
)
run = client_report.beta.threads.runs.create(thread_id = thread_id, assistant_id = my_assistant.id)
print(f"[] Run Created : {run.id}")
while run.status != 'completed':
run = client.beta.threads.runs.retrieve(
thread_id=thread_id,
run_id=run.id
)
print(run.status)
time.sleep(5)
# ottengo tutti i messaggi nel thread
message_responses = client.beta.threads.messages.list(thread_id = thread_id)
latest_messages = message_responses.data[0]
text = latest_messages.content[0].text.value
text = re.sub(r'γ.*?γ', '', text)
d={}
d['thread']=thread_id
d['risposta']=text
dati.append(d)
output=dati
response = jsonify(output)
return response
@app.route('/bot_report',methods=['POST','GET'])
@cross_origin()
def bot_report():
dati=[]
input_json = request.get_json()
domanda=str(input_json['domanda'])
print(domanda)
thread = client_report.beta.threads.create()
thread_id=thread.id
messaggio = client_report.beta.threads.messages.create(
thread_id = thread_id,
role = "user",
content = domanda
)
run = client_report.beta.threads.runs.create(thread_id = thread_id, assistant_id = my_assistant_report.id)
print(f"[] Run Created : {run.id}")
while run.status != 'completed':
run = client_report.beta.threads.runs.retrieve(
thread_id=thread_id,
run_id=run.id
)
print(run.status)
time.sleep(5)
# ottengo tutti i messaggi nel thread
message_responses = client_report.beta.threads.messages.list(thread_id = thread_id)
latest_messages = message_responses.data[0]
text = latest_messages.content[0].text.value
text = re.sub(r'γ.*?γ', '', text)
d={}
d['thread']=thread_id
d['risposta']=text
dati.append(d)
output=dati
response = jsonify(output)
return response
if __name__ == "__main__":
app.run(host='0.0.0.0', port=7860) |