File size: 5,211 Bytes
b265364 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
from util.data import *
import numpy as np
from sklearn.metrics import precision_score, recall_score, roc_auc_score, f1_score
def get_full_err_scores(test_result, val_result):
np_test_result = np.array(test_result)
np_val_result = np.array(val_result)
all_scores = None
all_normals = None
feature_num = np_test_result.shape[-1]
labels = np_test_result[2, :, 0].tolist()
for i in range(feature_num):
test_re_list = np_test_result[:2,:,i]
val_re_list = np_val_result[:2,:,i]
scores = get_err_scores(test_re_list, val_re_list)
normal_dist = get_err_scores(val_re_list, val_re_list)
if all_scores is None:
all_scores = scores
all_normals = normal_dist
else:
all_scores = np.vstack((
all_scores,
scores
))
all_normals = np.vstack((
all_normals,
normal_dist
))
return all_scores, all_normals
def get_final_err_scores(test_result, val_result):
full_scores, all_normals = get_full_err_scores(test_result, val_result, return_normal_scores=True)
all_scores = np.max(full_scores, axis=0)
return all_scores
def get_err_scores(test_res, val_res):
test_predict, test_gt = test_res
val_predict, val_gt = val_res
n_err_mid, n_err_iqr = get_err_median_and_iqr(test_predict, test_gt)
test_delta = np.abs(np.subtract(
np.array(test_predict).astype(np.float64),
np.array(test_gt).astype(np.float64)
))
epsilon=1e-2
err_scores = (test_delta - n_err_mid) / ( np.abs(n_err_iqr) +epsilon)
smoothed_err_scores = np.zeros(err_scores.shape)
before_num = 3
for i in range(before_num, len(err_scores)):
smoothed_err_scores[i] = np.mean(err_scores[i-before_num:i+1])
return smoothed_err_scores
def get_loss(predict, gt):
return eval_mseloss(predict, gt)
def get_f1_scores(total_err_scores, gt_labels, topk=1):
print('total_err_scores', total_err_scores.shape)
# remove the highest and lowest score at each timestep
total_features = total_err_scores.shape[0]
# topk_indices = np.argpartition(total_err_scores, range(total_features-1-topk, total_features-1), axis=0)[-topk-1:-1]
topk_indices = np.argpartition(total_err_scores, range(total_features-topk-1, total_features), axis=0)[-topk:]
topk_indices = np.transpose(topk_indices)
total_topk_err_scores = []
topk_err_score_map=[]
# topk_anomaly_sensors = []
for i, indexs in enumerate(topk_indices):
sum_score = sum( score for k, score in enumerate(sorted([total_err_scores[index, i] for j, index in enumerate(indexs)])) )
total_topk_err_scores.append(sum_score)
final_topk_fmeas = eval_scores(total_topk_err_scores, gt_labels, 400)
return final_topk_fmeas
def get_val_performance_data(total_err_scores, normal_scores, gt_labels, topk=1):
total_features = total_err_scores.shape[0]
topk_indices = np.argpartition(total_err_scores, range(total_features-topk-1, total_features), axis=0)[-topk:]
total_topk_err_scores = []
topk_err_score_map=[]
total_topk_err_scores = np.sum(np.take_along_axis(total_err_scores, topk_indices, axis=0), axis=0)
thresold = np.max(normal_scores)
pred_labels = np.zeros(len(total_topk_err_scores))
pred_labels[total_topk_err_scores > thresold] = 1
for i in range(len(pred_labels)):
pred_labels[i] = int(pred_labels[i])
gt_labels[i] = int(gt_labels[i])
pre = precision_score(gt_labels, pred_labels)
rec = recall_score(gt_labels, pred_labels)
f1 = f1_score(gt_labels, pred_labels)
auc_score = roc_auc_score(gt_labels, total_topk_err_scores)
return f1, pre, rec, auc_score, thresold
def get_best_performance_data(total_err_scores, gt_labels, topk=1):
total_features = total_err_scores.shape[0]
# topk_indices = np.argpartition(total_err_scores, range(total_features-1-topk, total_features-1), axis=0)[-topk-1:-1]
topk_indices = np.argpartition(total_err_scores, range(total_features-topk-1, total_features), axis=0)[-topk:]
total_topk_err_scores = []
topk_err_score_map=[]
total_topk_err_scores = np.sum(np.take_along_axis(total_err_scores, topk_indices, axis=0), axis=0)
final_topk_fmeas ,thresolds = eval_scores(total_topk_err_scores, gt_labels, 400, return_thresold=True)
th_i = final_topk_fmeas.index(max(final_topk_fmeas))
thresold = thresolds[th_i]
pred_labels = np.zeros(len(total_topk_err_scores))
pred_labels[total_topk_err_scores > thresold] = 1
for i in range(len(pred_labels)):
pred_labels[i] = int(pred_labels[i])
gt_labels[i] = int(gt_labels[i])
pre = precision_score(gt_labels, pred_labels)
rec = recall_score(gt_labels, pred_labels)
auc_score = roc_auc_score(gt_labels, total_topk_err_scores)
return max(final_topk_fmeas), pre, rec, auc_score, thresold
|