File size: 4,860 Bytes
e57138c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import streamlit as st
from PIL import Image
import matplotlib.pyplot as plt
import networkx as nx
import json
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
torch.cuda.empty_cache()
import os
import numpy as np

from pipeline.detector import detect_symbols_and_lines
from pipeline.graph_builder import build_graph
from pipeline.gnn_model import run_gnn
from pipeline.agent import generate_agent_actions

st.set_page_config(layout="wide")
st.title("?? Agentic Predictive Maintenance (P&ID Graph + GNN)")

# ===== Initialize Session State =====
for key, default in {
    "G": None,
    "feature_map": {},
    "scores": {},
    "fig": None,
    "actions": [],
    "deepseek_responses": [],
}.items():
    if key not in st.session_state:
        st.session_state[key] = default

# ===== Redisplay Previous Outputs =====
if st.session_state["fig"]:
    st.subheader("?? Previous Graph Visualization")
    st.pyplot(st.session_state["fig"])

if st.session_state["actions"]:
    st.subheader("??? Previous Agent Actions")
    for action in st.session_state["actions"]:
        st.write(action)

if st.session_state["deepseek_responses"]:
    st.subheader("?? Previous DeepSeek Responses")
    for r in st.session_state["deepseek_responses"]:
        st.markdown(f"**You:** {r['query']}")
        st.markdown(f"**DeepSeek:** {r['answer']}")

# ===== Upload and Analyze Image =====
uploaded_file = st.file_uploader("Upload a P&ID Image", type=["png", "jpg", "jpeg"])
if uploaded_file:
    image = Image.open(uploaded_file)
    st.image(image, caption="P&ID Diagram", use_column_width=True)

    if st.button("?? Run Detection and Analysis"):
        detections, annotations, class_names = detect_symbols_and_lines(image)
        graph = build_graph(image, detections, annotations, class_names)

        st.info("Running anomaly detection on the graph...")

        fig, feature_map, red_nodes, central_node, scores, G = run_gnn()

        st.session_state.G = G
        st.session_state.feature_map = feature_map
        st.session_state.scores = scores
        st.session_state.fig = fig

        st.pyplot(fig)

        actions = generate_agent_actions(fig, feature_map, red_nodes, central_node, scores)
        st.session_state.actions = actions

        for action in actions:
            st.write(action)

# ===== DeepSeek Local Model Setup =====
@st.cache_resource
def load_deepseek_model():
    model_name = "deepseek-ai/deepseek-coder-1.3b-instruct"  # lightweight option
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float16,
        device_map="cuda",
        trust_remote_code=True
    )
    return model, tokenizer

# ===== DeepSeek Q&A =====
st.subheader("?? Ask Questions About the Graph (DeepSeek Local)")
user_query = st.chat_input("Ask a question about the graph...")

if user_query:
    G = st.session_state.get("G")
    feature_map = st.session_state.get("feature_map", {})
    scores = st.session_state.get("scores", {})

    if G and feature_map and scores:
        graph_data = {
            "nodes": [
                {
                    "id": str(i),
                    "label": feature_map.get(i, f"Node {i}"),
                    "score": float(scores.get(i, 0.0))
                }
                for i in G.nodes()
            ],
            "edges": [
                {"source": str(u), "target": str(v)}
                for u, v in G.edges()
            ]
        }

        prompt = (
            "You are an expert graph analyst. Analyze this P&ID graph and answer the question.\n\n"
            "### Graph Data:\n"
            f"{json.dumps(graph_data, indent=2)}\n\n"
            "### Question:\n"
            f"{user_query}\n\n"
            "### Answer:\n"
        )

        try:
            with st.spinner("Thinking (via DeepSeek Local)..."):
                model, tokenizer = load_deepseek_model()

                inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
                outputs = model.generate(
                    **inputs,
                    max_new_tokens=128,
                    temperature=0.7,
                    do_sample=True
                )

                answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
                answer = answer[len(prompt):].strip()

                st.session_state.deepseek_responses.append({
                    "query": user_query,
                    "answer": answer
                })

                st.markdown(f"**DeepSeek:** {answer}")

        except Exception as e:
            st.error(f"DeepSeek error: {e}")
            st.error("Ensure enough GPU memory (8GB+ recommended).")
    else:
        st.warning("?? Please analyze a diagram first to generate a graph.")