Spaces:
Runtime error
Runtime error
File size: 5,255 Bytes
8dc355c 7780f80 8dc355c 7780f80 8dc355c a4bef47 8dc355c 3b5f01b 8dc355c 7780f80 8dc355c 5f5b62e 8dc355c f1aa575 def96b5 f1aa575 499c5ad 8dc355c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import neural_style
import streamlit as st
import os
import random
import numpy as np
from PIL import Image, ImageEnhance
from io import BytesIO
import matplotlib.pyplot as plt
import streamlit_ext as ste #for download button not to rerun
from huggingface_hub import upload_file
HF_TOKEN = os.environ.get("HF_TOKEN")
st.set_page_config(layout="wide")
st.markdown('<p class="font">Afrodreams.AI</p>', unsafe_allow_html=True)
st.subheader("This app takes in your image and styles it with a unique african art.")
#Create two columns with different width
col1, col2 = st.columns( [0.8, 0.2])
import time
with col1: # To display the header text using css style
st.markdown(""" <style> .font {
font-size:35px ; font-family: 'Cooper Black'; color: #FF9633;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font">Upload your photo here...</p>', unsafe_allow_html=True)
#Add file uploader to allow users to upload photos
uploaded_file = st.file_uploader("", type=['jpg','png','jpeg'])
# add slider to side bar
style_weight = st.slider("Select Style Weight", min_value=10, max_value=100, value=12)
img_size_slider= st.select_slider(label= 'Seleet Output Quality Level',
options = ['Very Low', 'Low', 'Normal', 'High', 'Very High'],
value='Normal')
img_size_mapping = {'Very Low':128, 'Low':300, 'Normal':400, 'High':500, 'Very High':600}
def get_random_subset(list_, num_imgs):
return random.sample(list_, num_imgs)
def display_random_images(five_rand_imgs, display_type, size= (15, 6)):
fig = plt.figure(figsize=size)
fig.subplots_adjust(wspace=0.2)
for i in range(1, len(five_rand_imgs)+1):
ith_image = Image.open(five_rand_imgs[i-1])
ax = fig.add_subplot(1, 5, i)
ax.imshow(ith_image)
ax.set_title(f'{display_type} {i}')
plt.axis('off')
st.pyplot(fig)
path = 'stylesv2'
#expander for style selection
with st.expander("Expand to select style type"):
img_names = [os.path.join(path, img) for img in os.listdir(path)]
five_rand_imgs0 = get_random_subset(img_names, 5)
if 'selected_image' not in st.session_state:
st.session_state.selected_image = five_rand_imgs0
five_rand_imgs = st.session_state.selected_image
display_random_images(five_rand_imgs, 'Style')
chosen_style = st.selectbox(
'Select the style you want to use',
options = five_rand_imgs, format_func = lambda x: "Style " + str(five_rand_imgs.index(x) + 1),
key= 'expander1'
)
#put notificaation
#with st.empty():
#for seconds in range(5):
#st.info('Please note that by using this app, you agree that your image be will be showcased on this app.')
#time.sleep(1)
#st.empty()
#Add 'before' and 'after' columns
if uploaded_file is not None:
image = Image.open(uploaded_file)
col1, col2 = st.columns( [0.5, 0.5])
with col1:
st.markdown('<p style="text-align: center;">Before</p>',unsafe_allow_html=True)
st.image(image,width=300)
with col2:
st.markdown('<p style="text-align: center;">After</p>',unsafe_allow_html=True)
# add a button
run = st.button('Generate Art')
my_bar = st.progress(0)
params = neural_style.TransferParams()
params.gpu =0 #"c"
params.backend = "mkl"
params.image_size = img_size_mapping[img_size_slider]
params.content_image = uploaded_file
params.style_weight = style_weight
keep_style = False
if run==True:
# run image selection if keep style is false
if keep_style==False:
styles = os.listdir(path)
#params.style_image = path + '/' + random.choice(styles)
params.style_image = chosen_style
st.session_state.submitted = True
with st.spinner('Wait for it...'):
neural_style.transfer(params)
#display image when done.
with col2:
if 'submitted' in st.session_state:
result = Image.open('out.png')
st.image(result, width=300)
buf = BytesIO()
result.save(buf, format="png")
img_file_name = f"generated_samples/{str(len(os.listdir('generated_samples')))}.png"
_ = upload_file(path_or_fileobj = 'out.png',
path_in_repo = img_file_name,
repo_id='AfrodreamsAI/afrodreams',
repo_type='space',
token=HF_TOKEN
)
byte_im = buf.getvalue()
run = ste.download_button("Download Image", data=byte_im, file_name="afrodreams.png")
#if run==True:
# selectiuing random iamges to be displayed
img_names = [os.path.join('generated_samples', img) for img in os.listdir('generated_samples')]
five_rand_imgs1 = get_random_subset(img_names, 5)
st.subheader('\n\n\n\n\n\n\n\n\n Examples of some Generate Images')
display_random_images(five_rand_imgs1, 'Generate image', size=(20, 15))
|