Spaces:
Runtime error
Runtime error
File size: 19,382 Bytes
59c0b8d 12d6722 4652abb 59c0b8d 5dab46e 59c0b8d bea1ff7 59c0b8d 5dab46e 59c0b8d ca8ddf3 59c0b8d 4652abb 59c0b8d 4e5c133 59c0b8d 4652abb 59c0b8d 4652abb 59c0b8d 4652abb 59c0b8d 5dab46e 59c0b8d 93d28e7 59c0b8d 93d28e7 4652abb 59c0b8d 4652abb 59c0b8d 4652abb 59c0b8d 4652abb 59c0b8d 4652abb 59c0b8d 4652abb 59c0b8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
import os
import copy
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from PIL import Image
from CaffeLoader import loadCaffemodel, ModelParallel
import argparse
parser = argparse.ArgumentParser()
# Basic options
parser.add_argument("-style_image", help="Style target image", default='examples/inputs/seated-nude.jpg')
parser.add_argument("-style_blend_weights", default=None)
parser.add_argument("-content_image", help="Content target image", default='examples/inputs/tubingen.jpg')
parser.add_argument("-image_size", help="Maximum height / width of generated image", type=int, default=512)
parser.add_argument("-gpu", help="Zero-indexed ID of the GPU to use; for CPU mode set -gpu = c", default=0)
# Optimization options
parser.add_argument("-content_weight", type=float, default=5e0)
parser.add_argument("-style_weight", type=float, default=1e2)
parser.add_argument("-normalize_weights", action='store_true')
parser.add_argument("-tv_weight", type=float, default=1e-3)
parser.add_argument("-num_iterations", type=int, default=1000)
parser.add_argument("-init", choices=['random', 'image'], default='random')
parser.add_argument("-init_image", default=None)
parser.add_argument("-optimizer", choices=['lbfgs', 'adam'], default='lbfgs')
parser.add_argument("-learning_rate", type=float, default=1e0)
parser.add_argument("-lbfgs_num_correction", type=int, default=100)
# Output options
parser.add_argument("-print_iter", type=int, default=50)
parser.add_argument("-save_iter", type=int, default=100)
parser.add_argument("-output_image", default='out.png')
# Other options
parser.add_argument("-style_scale", type=float, default=1.0)
parser.add_argument("-original_colors", type=int, choices=[0, 1], default=0)
parser.add_argument("-pooling", choices=['avg', 'max'], default='max')
parser.add_argument("-model_file", type=str, default='models/vgg19-d01eb7cb.pth')
parser.add_argument("-disable_check", action='store_true')
parser.add_argument("-backend", choices=['nn', 'cudnn', 'mkl', 'mkldnn', 'openmp', 'mkl,cudnn', 'cudnn,mkl'], default='nn')
parser.add_argument("-cudnn_autotune", action='store_true')
parser.add_argument("-seed", type=int, default=-1)
parser.add_argument("-content_layers", help="layers for content", default='relu4_2')
parser.add_argument("-style_layers", help="layers for style", default='relu1_1,relu2_1,relu3_1,relu4_1,relu5_1')
parser.add_argument("-multidevice_strategy", default='4,7,29')
params = parser.parse_args()
Image.MAX_IMAGE_PIXELS = 1000000000 # Support gigapixel images
class TransferParams():
style_image = 'examples/inputs/seated-nude.jpg'
style_blend_weights = None
content_image = 'examples/inputs/tubingen.jpg'
image_size = 300
gpu = "c"
content_weight = 5e0
style_weight = 1e2
normalize_weights = False
tv_weight = 1e-3
num_iterations = 1000
init = 'random'
init_image = None
optimizer = 'lbfgs'
learning_rate = 1e0
lbfgs_num_correction = 100
print_iter = 50
save_iter = 1000
output_image = 'out.png'
log_level = 10
style_scale = 1.0
original_colors = 0
pooling = 'max'
model_file = 'models/nin_imagenet.pth'
disable_check = False
backend = 'mkl'
cudnn_autotune = False
seed = -1
content_layers = 'relu0,relu3,relu7,relu12'
style_layers = 'relu0,relu3,relu7,relu12'
multidevice_strategy = '4,7,29'
def main():
transfer(params)
def transfer(params):
dtype, multidevice, backward_device = setup_gpu()
print(dtype)
cnn, layerList = loadCaffemodel(params.model_file, params.pooling, params.gpu, params.disable_check)
content_image = preprocess(params.content_image, params.image_size).type(dtype)
style_image_input = params.style_image.split(',')
style_image_list, ext = [], [".jpg", ".jpeg", ".png", ".tiff"]
for image in style_image_input:
if os.path.isdir(image):
images = (image + "/" + file for file in os.listdir(image)
if os.path.splitext(file)[1].lower() in ext)
style_image_list.extend(images)
else:
style_image_list.append(image)
style_images_caffe = []
for image in style_image_list:
style_size = int(params.image_size * params.style_scale)
img_caffe = preprocess(image, style_size).type(dtype)
style_images_caffe.append(img_caffe)
if params.init_image != None:
image_size = (content_image.size(2), content_image.size(3))
init_image = preprocess(params.init_image, image_size).type(dtype)
# Handle style blending weights for multiple style inputs
style_blend_weights = []
if params.style_blend_weights == None:
# Style blending not specified, so use equal weighting
for i in style_image_list:
style_blend_weights.append(1.0)
for i, blend_weights in enumerate(style_blend_weights):
style_blend_weights[i] = int(style_blend_weights[i])
else:
style_blend_weights = params.style_blend_weights.split(',')
assert len(style_blend_weights) == len(style_image_list), \
"-style_blend_weights and -style_images must have the same number of elements!"
# Normalize the style blending weights so they sum to 1
style_blend_sum = 0
for i, blend_weights in enumerate(style_blend_weights):
style_blend_weights[i] = float(style_blend_weights[i])
style_blend_sum = float(style_blend_sum) + style_blend_weights[i]
for i, blend_weights in enumerate(style_blend_weights):
style_blend_weights[i] = float(style_blend_weights[i]) / float(style_blend_sum)
content_layers = params.content_layers.split(',')
style_layers = params.style_layers.split(',')
# Set up the network, inserting style and content loss modules
cnn = copy.deepcopy(cnn)
content_losses, style_losses, tv_losses = [], [], []
next_content_idx, next_style_idx = 1, 1
net = nn.Sequential()
c, r = 0, 0
if params.tv_weight > 0:
tv_mod = TVLoss(params.tv_weight).type(dtype)
net.add_module(str(len(net)), tv_mod)
tv_losses.append(tv_mod)
for i, layer in enumerate(list(cnn), 1):
if next_content_idx <= len(content_layers) or next_style_idx <= len(style_layers):
if isinstance(layer, nn.Conv2d):
net.add_module(str(len(net)), layer)
if layerList['C'][c] in content_layers:
print("Setting up content layer " + str(i) + ": " + str(layerList['C'][c]))
loss_module = ContentLoss(params.content_weight)
net.add_module(str(len(net)), loss_module)
content_losses.append(loss_module)
if layerList['C'][c] in style_layers:
print("Setting up style layer " + str(i) + ": " + str(layerList['C'][c]))
loss_module = StyleLoss(params.style_weight)
net.add_module(str(len(net)), loss_module)
style_losses.append(loss_module)
c+=1
if isinstance(layer, nn.ReLU):
net.add_module(str(len(net)), layer)
if layerList['R'][r] in content_layers:
print("Setting up content layer " + str(i) + ": " + str(layerList['R'][r]))
loss_module = ContentLoss(params.content_weight)
net.add_module(str(len(net)), loss_module)
content_losses.append(loss_module)
next_content_idx += 1
if layerList['R'][r] in style_layers:
print("Setting up style layer " + str(i) + ": " + str(layerList['R'][r]))
loss_module = StyleLoss(params.style_weight)
net.add_module(str(len(net)), loss_module)
style_losses.append(loss_module)
next_style_idx += 1
r+=1
if isinstance(layer, nn.MaxPool2d) or isinstance(layer, nn.AvgPool2d):
net.add_module(str(len(net)), layer)
if multidevice:
net = setup_multi_device(net)
# Capture content targets
for i in content_losses:
i.mode = 'capture'
print("Capturing content targets")
print_torch(net, multidevice)
net(content_image)
# Capture style targets
for i in content_losses:
i.mode = 'None'
for i, image in enumerate(style_images_caffe):
print("Capturing style target " + str(i+1))
for j in style_losses:
j.mode = 'capture'
j.blend_weight = style_blend_weights[i]
net(style_images_caffe[i])
# Set all loss modules to loss mode
for i in content_losses:
i.mode = 'loss'
for i in style_losses:
i.mode = 'loss'
# Maybe normalize content and style weights
if params.normalize_weights:
normalize_weights(content_losses, style_losses)
# Freeze the network in order to prevent
# unnecessary gradient calculations
for param in net.parameters():
param.requires_grad = False
# Initialize the image
if params.seed >= 0:
torch.manual_seed(params.seed)
torch.cuda.manual_seed_all(params.seed)
torch.backends.cudnn.deterministic=True
if params.init == 'random':
B, C, H, W = content_image.size()
img = torch.randn(C, H, W).mul(0.001).unsqueeze(0).type(dtype)
elif params.init == 'image':
if params.init_image != None:
img = init_image.clone()
else:
img = content_image.clone()
img = nn.Parameter(img)
def maybe_print(t, loss):
if params.print_iter > 0 and t % params.print_iter == 0:
print("Iteration " + str(t) + " / "+ str(params.num_iterations))
for i, loss_module in enumerate(content_losses):
print(" Content " + str(i+1) + " loss: " + str(loss_module.loss.item()))
for i, loss_module in enumerate(style_losses):
print(" Style " + str(i+1) + " loss: " + str(loss_module.loss.item()))
print(" Total loss: " + str(loss.item()))
final_image = ''
def maybe_save(t):
should_save = params.save_iter > 950 and t % params.save_iter == 0
should_save = should_save or t == params.num_iterations
if should_save:
output_filename, file_extension = os.path.splitext(params.output_image)
if t == params.num_iterations:
filename = output_filename + str(file_extension)
else:
filename = str(output_filename) + "_" + str(t) + str(file_extension)
disp = deprocess(img.clone())
# Maybe perform postprocessing for color-independent style transfer
if params.original_colors == 1:
disp = original_colors(deprocess(content_image.clone()), disp)
disp.save(str(filename))
return disp
# Function to evaluate loss and gradient. We run the net forward and
# backward to get the gradient, and sum up losses from the loss modules.
# optim.lbfgs internally handles iteration and calls this function many
# times, so we manually count the number of iterations to handle printing
# and saving intermediate results.
num_calls = [0]
def feval():
num_calls[0] += 1
optimizer.zero_grad()
net(img)
loss = 0
for mod in content_losses:
loss += mod.loss.to(backward_device)
for mod in style_losses:
loss += mod.loss.to(backward_device)
if params.tv_weight > 0:
for mod in tv_losses:
loss += mod.loss.to(backward_device)
loss.backward()
final_image = maybe_save(num_calls[0])
maybe_print(num_calls[0], loss)
return loss
print('the final image is', final_image)
optimizer, loopVal = setup_optimizer(img)
while num_calls[0] <= loopVal:
optimizer.step(feval)
# Configure the optimizer
def setup_optimizer(img):
if params.optimizer == 'lbfgs':
print("Running optimization with L-BFGS")
optim_state = {
'max_iter': params.num_iterations,
'tolerance_change': -1,
'tolerance_grad': -1,
}
if params.lbfgs_num_correction != 100:
optim_state['history_size'] = params.lbfgs_num_correction
optimizer = optim.LBFGS([img], **optim_state)
loopVal = 1
elif params.optimizer == 'adam':
print("Running optimization with ADAM")
optimizer = optim.Adam([img], lr = params.learning_rate)
loopVal = params.num_iterations - 1
return optimizer, loopVal
def setup_gpu():
def setup_cuda():
if 'cudnn' in params.backend:
torch.backends.cudnn.enabled = True
if params.cudnn_autotune:
torch.backends.cudnn.benchmark = True
else:
torch.backends.cudnn.enabled = False
def setup_cpu():
if 'mkl' in params.backend and 'mkldnn' not in params.backend:
torch.backends.mkl.enabled = True
elif 'mkldnn' in params.backend:
raise ValueError("MKL-DNN is not supported yet.")
elif 'openmp' in params.backend:
torch.backends.openmp.enabled = True
multidevice = False
if "," in str(params.gpu):
devices = params.gpu.split(',')
multidevice = True
if 'c' in str(devices[0]).lower():
backward_device = "cpu"
setup_cuda(), setup_cpu()
else:
backward_device = "cuda:" + devices[0]
setup_cuda()
dtype = torch.FloatTensor
#elif "c" not in str(params.gpu).lower():
#setup_cuda()
#dtype, backward_device = torch.cuda.FloatTensor, "cuda:" + str(params.gpu)
else:
setup_cpu()
dtype, backward_device = torch.FloatTensor, "cpu"
return dtype, multidevice, backward_device
def setup_multi_device(net):
assert len(params.gpu.split(',')) - 1 == len(params.multidevice_strategy.split(',')), \
"The number of -multidevice_strategy layer indices minus 1, must be equal to the number of -gpu devices."
new_net = ModelParallel(net, params.gpu, params.multidevice_strategy)
return new_net
# Preprocess an image before passing it to a model.
# We need to rescale from [0, 1] to [0, 255], convert from RGB to BGR,
# and subtract the mean pixel.
def preprocess(image_name, image_size):
image = Image.open(image_name).convert('RGB')
if type(image_size) is not tuple:
image_size = tuple([int((float(image_size) / max(image.size))*x) for x in (image.height, image.width)])
Loader = transforms.Compose([transforms.Resize(image_size), transforms.ToTensor()])
rgb2bgr = transforms.Compose([transforms.Lambda(lambda x: x[torch.LongTensor([2,1,0])])])
Normalize = transforms.Compose([transforms.Normalize(mean=[103.939, 116.779, 123.68], std=[1,1,1])])
tensor = Normalize(rgb2bgr(Loader(image) * 256)).unsqueeze(0)
return tensor
# Undo the above preprocessing.
def deprocess(output_tensor):
Normalize = transforms.Compose([transforms.Normalize(mean=[-103.939, -116.779, -123.68], std=[1,1,1])])
bgr2rgb = transforms.Compose([transforms.Lambda(lambda x: x[torch.LongTensor([2,1,0])])])
output_tensor = bgr2rgb(Normalize(output_tensor.squeeze(0).cpu())) / 256
output_tensor.clamp_(0, 1)
Image2PIL = transforms.ToPILImage()
image = Image2PIL(output_tensor.cpu())
return image
# Combine the Y channel of the generated image and the UV/CbCr channels of the
# content image to perform color-independent style transfer.
def original_colors(content, generated):
content_channels = list(content.convert('YCbCr').split())
generated_channels = list(generated.convert('YCbCr').split())
content_channels[0] = generated_channels[0]
return Image.merge('YCbCr', content_channels).convert('RGB')
# Print like Lua/Torch7
def print_torch(net, multidevice):
if multidevice:
return
simplelist = ""
for i, layer in enumerate(net, 1):
simplelist = simplelist + "(" + str(i) + ") -> "
print("nn.Sequential ( \n [input -> " + simplelist + "output]")
def strip(x):
return str(x).replace(", ",',').replace("(",'').replace(")",'') + ", "
def n():
return " (" + str(i) + "): " + "nn." + str(l).split("(", 1)[0]
for i, l in enumerate(net, 1):
if "2d" in str(l):
ks, st, pd = strip(l.kernel_size), strip(l.stride), strip(l.padding)
if "Conv2d" in str(l):
ch = str(l.in_channels) + " -> " + str(l.out_channels)
print(n() + "(" + ch + ", " + (ks).replace(",",'x', 1) + st + pd.replace(", ",')'))
elif "Pool2d" in str(l):
st = st.replace(" ",' ') + st.replace(", ",')')
print(n() + "(" + ((ks).replace(",",'x' + ks, 1) + st).replace(", ",','))
else:
print(n())
print(")")
# Divide weights by channel size
def normalize_weights(content_losses, style_losses):
for n, i in enumerate(content_losses):
i.strength = i.strength / max(i.target.size())
for n, i in enumerate(style_losses):
i.strength = i.strength / max(i.target.size())
# Define an nn Module to compute content loss
class ContentLoss(nn.Module):
def __init__(self, strength):
super(ContentLoss, self).__init__()
self.strength = strength
self.crit = nn.MSELoss()
self.mode = 'None'
def forward(self, input):
if self.mode == 'loss':
self.loss = self.crit(input, self.target) * self.strength
elif self.mode == 'capture':
self.target = input.detach()
return input
class GramMatrix(nn.Module):
def forward(self, input):
B, C, H, W = input.size()
x_flat = input.view(C, H * W)
return torch.mm(x_flat, x_flat.t())
# Define an nn Module to compute style loss
class StyleLoss(nn.Module):
def __init__(self, strength):
super(StyleLoss, self).__init__()
self.target = torch.Tensor()
self.strength = strength
self.gram = GramMatrix()
self.crit = nn.MSELoss()
self.mode = 'None'
self.blend_weight = None
def forward(self, input):
self.G = self.gram(input)
self.G = self.G.div(input.nelement())
if self.mode == 'capture':
if self.blend_weight == None:
self.target = self.G.detach()
elif self.target.nelement() == 0:
self.target = self.G.detach().mul(self.blend_weight)
else:
self.target = self.target.add(self.blend_weight, self.G.detach())
elif self.mode == 'loss':
self.loss = self.strength * self.crit(self.G, self.target)
return input
class TVLoss(nn.Module):
def __init__(self, strength):
super(TVLoss, self).__init__()
self.strength = strength
def forward(self, input):
self.x_diff = input[:,:,1:,:] - input[:,:,:-1,:]
self.y_diff = input[:,:,:,1:] - input[:,:,:,:-1]
self.loss = self.strength * (torch.sum(torch.abs(self.x_diff)) + torch.sum(torch.abs(self.y_diff)))
return input
if __name__ == "__main__":
main()
|