File size: 19,445 Bytes
59c0b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cace7f6
59c0b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d6722
05b1265
59c0b8d
 
 
 
5dab46e
59c0b8d
 
ed0c6e6
59c0b8d
 
cbe658a
5dab46e
59c0b8d
 
 
 
 
6fe0a06
59c0b8d
4652abb
59c0b8d
 
6fe0a06
 
59c0b8d
 
 
 
 
 
 
0338715
59c0b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0338715
59c0b8d
 
 
 
 
0338715
59c0b8d
 
 
 
 
 
 
 
 
0338715
59c0b8d
 
 
 
 
 
0338715
59c0b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0338715
59c0b8d
 
 
 
 
 
 
 
0338715
59c0b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4652abb
59c0b8d
 
 
 
 
 
 
 
 
6a6d6b7
59c0b8d
5dab46e
59c0b8d
 
 
 
 
 
 
 
 
 
 
 
 
93d28e7
59c0b8d
93d28e7
4652abb
59c0b8d
 
 
 
 
 
 
4652abb
59c0b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4652abb
59c0b8d
 
 
6a6d6b7
59c0b8d
 
 
 
4652abb
59c0b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b1265
 
 
59c0b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a6d6b7
59c0b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import os
import copy
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms

from PIL import Image
from CaffeLoader import loadCaffemodel, ModelParallel

import argparse
parser = argparse.ArgumentParser()
# Basic options
parser.add_argument("-style_image", help="Style target image", default='examples/inputs/seated-nude.jpg')
parser.add_argument("-style_blend_weights", default=None)
parser.add_argument("-content_image", help="Content target image", default='examples/inputs/tubingen.jpg')
parser.add_argument("-image_size", help="Maximum height / width of generated image", type=int, default=512)
parser.add_argument("-gpu", help="Zero-indexed ID of the GPU to use; for CPU mode set -gpu = c", default=0)

# Optimization options
parser.add_argument("-content_weight", type=float, default=5e0)
parser.add_argument("-style_weight", type=float, default=1e2)
parser.add_argument("-normalize_weights", action='store_true')
parser.add_argument("-tv_weight", type=float, default=1e-3)
parser.add_argument("-num_iterations", type=int, default=1000)
parser.add_argument("-init", choices=['random', 'image'], default='random')
parser.add_argument("-init_image", default=None)
parser.add_argument("-optimizer", choices=['lbfgs', 'adam'], default='adam')
parser.add_argument("-learning_rate", type=float, default=1e0)
parser.add_argument("-lbfgs_num_correction", type=int, default=100)

# Output options
parser.add_argument("-print_iter", type=int, default=50)
parser.add_argument("-save_iter", type=int, default=100)
parser.add_argument("-output_image", default='out.png')

# Other options
parser.add_argument("-style_scale", type=float, default=1.0)
parser.add_argument("-original_colors", type=int, choices=[0, 1], default=0)
parser.add_argument("-pooling", choices=['avg', 'max'], default='max')
parser.add_argument("-model_file", type=str, default='models/vgg19-d01eb7cb.pth')
parser.add_argument("-disable_check", action='store_true')
parser.add_argument("-backend", choices=['nn', 'cudnn', 'mkl', 'mkldnn', 'openmp', 'mkl,cudnn', 'cudnn,mkl'], default='nn')
parser.add_argument("-cudnn_autotune", action='store_true')
parser.add_argument("-seed", type=int, default=-1)

parser.add_argument("-content_layers", help="layers for content", default='relu4_2')
parser.add_argument("-style_layers", help="layers for style", default='relu1_1,relu2_1,relu3_1,relu4_1,relu5_1')

parser.add_argument("-multidevice_strategy", default='4,7,29')
params = parser.parse_args()


Image.MAX_IMAGE_PIXELS = 1000000000 # Support gigapixel images


class TransferParams():
    style_image = 'examples/inputs/seated-nude.jpg'
    style_blend_weights = None
    content_image = 'examples/inputs/tubingen.jpg'
    image_size = 300
    gpu = 0# "c"
    content_weight = 5e0
    style_weight = 1e2
    normalize_weights = False
    tv_weight = 1e-3
    num_iterations = 1000
    init = 'random'
    init_image = None
    optimizer = 'adam'
    learning_rate = 1e0
    lbfgs_num_correction = 100
    print_iter = 50
    save_iter = 1000
    output_image = 'out.png'
    log_level = 10
    style_scale = 1.0
    original_colors = 0
    pooling = 'max'
    model_file = 'models/vgg16-00b39a1b.pth'#nin_imagenet.pth'
    disable_check = False
    backend = 'mkl'
    cudnn_autotune = False
    seed = -1
    content_layers = 'relu4_2'#relu0,relu3,relu7,relu12'
    style_layers = 'relu1_1,relu2_1,relu3_1,relu4_1,relu5_1'#relu0,relu3,relu7,relu12'
    multidevice_strategy = '4,7,29'

def main():
    transfer(params)

def transfer(params):
    dtype, multidevice, backward_device = setup_gpu()
 

    cnn, layerList = loadCaffemodel(params.model_file, params.pooling, params.gpu, params.disable_check)

    content_image = preprocess(params.content_image, params.image_size).type(dtype)
    style_image_input = params.style_image.split(',')
    style_image_list, ext = [], [".jpg", ".jpeg", ".png", ".tiff"]
    for image in style_image_input:
        if os.path.isdir(image):
            images = (image + "/" + file for file in os.listdir(image)
            if os.path.splitext(file)[1].lower() in ext)
            style_image_list.extend(images)
        else:
            style_image_list.append(image)
    style_images_caffe = []
    for image in style_image_list:
        style_size = int(params.image_size * params.style_scale)
        img_caffe = preprocess(image, style_size).type(dtype)
        style_images_caffe.append(img_caffe)

    if params.init_image != None:
        image_size = (content_image.size(2), content_image.size(3))
        init_image = preprocess(params.init_image, image_size).type(dtype)

    # Handle style blending weights for multiple style inputs
    style_blend_weights = []
    if params.style_blend_weights == None:
        # Style blending not specified, so use equal weighting
        for i in style_image_list:
            style_blend_weights.append(1.0)
        for i, blend_weights in enumerate(style_blend_weights):
            style_blend_weights[i] = int(style_blend_weights[i])
    else:
        style_blend_weights = params.style_blend_weights.split(',')
        assert len(style_blend_weights) == len(style_image_list), \
          "-style_blend_weights and -style_images must have the same number of elements!"

    # Normalize the style blending weights so they sum to 1
    style_blend_sum = 0
    for i, blend_weights in enumerate(style_blend_weights):
        style_blend_weights[i] = float(style_blend_weights[i])
        style_blend_sum = float(style_blend_sum) + style_blend_weights[i]
    for i, blend_weights in enumerate(style_blend_weights):
        style_blend_weights[i] = float(style_blend_weights[i]) / float(style_blend_sum)

    content_layers = params.content_layers.split(',')
    style_layers = params.style_layers.split(',')

    # Set up the network, inserting style and content loss modules
    cnn = copy.deepcopy(cnn)
    content_losses, style_losses, tv_losses = [], [], []
    next_content_idx, next_style_idx = 1, 1
    net = nn.Sequential()
    c, r = 0, 0
    if params.tv_weight > 0:
        tv_mod = TVLoss(params.tv_weight).type(dtype)
        net.add_module(str(len(net)), tv_mod)
        tv_losses.append(tv_mod)

    for i, layer in enumerate(list(cnn), 1):
        if next_content_idx <= len(content_layers) or next_style_idx <= len(style_layers):
            if isinstance(layer, nn.Conv2d):
                net.add_module(str(len(net)), layer)

                if layerList['C'][c] in content_layers:
                    #print("Setting up content layer " + str(i) + ": " + str(layerList['C'][c]))
                    loss_module = ContentLoss(params.content_weight)
                    net.add_module(str(len(net)), loss_module)
                    content_losses.append(loss_module)

                if layerList['C'][c] in style_layers:
                    #print("Setting up style layer " + str(i) + ": " + str(layerList['C'][c]))
                    loss_module = StyleLoss(params.style_weight)
                    net.add_module(str(len(net)), loss_module)
                    style_losses.append(loss_module)
                c+=1

            if isinstance(layer, nn.ReLU):
                net.add_module(str(len(net)), layer)

                if layerList['R'][r] in content_layers:
                    #print("Setting up content layer " + str(i) + ": " + str(layerList['R'][r]))
                    loss_module = ContentLoss(params.content_weight)
                    net.add_module(str(len(net)), loss_module)
                    content_losses.append(loss_module)
                    next_content_idx += 1

                if layerList['R'][r] in style_layers:
                    #print("Setting up style layer " + str(i) + ": " + str(layerList['R'][r]))
                    loss_module = StyleLoss(params.style_weight)
                    net.add_module(str(len(net)), loss_module)
                    style_losses.append(loss_module)
                    next_style_idx += 1
                r+=1

            if isinstance(layer, nn.MaxPool2d) or isinstance(layer, nn.AvgPool2d):
                net.add_module(str(len(net)), layer)

    if multidevice:
        net = setup_multi_device(net)

    # Capture content targets
    for i in content_losses:
        i.mode = 'capture'
    #print("Capturing content targets")
    print_torch(net, multidevice)
    net(content_image)

    # Capture style targets
    for i in content_losses:
        i.mode = 'None'

    for i, image in enumerate(style_images_caffe):
        #print("Capturing style target " + str(i+1))
        for j in style_losses:
            j.mode = 'capture'
            j.blend_weight = style_blend_weights[i]
        net(style_images_caffe[i])

    # Set all loss modules to loss mode
    for i in content_losses:
        i.mode = 'loss'
    for i in style_losses:
        i.mode = 'loss'

    # Maybe normalize content and style weights
    if params.normalize_weights:
        normalize_weights(content_losses, style_losses)

    # Freeze the network in order to prevent
    # unnecessary gradient calculations
    for param in net.parameters():
        param.requires_grad = False

    # Initialize the image
    if params.seed >= 0:
        torch.manual_seed(params.seed)
        torch.cuda.manual_seed_all(params.seed)
        torch.backends.cudnn.deterministic=True
    if params.init == 'random':
        B, C, H, W = content_image.size()
        img = torch.randn(C, H, W).mul(0.001).unsqueeze(0).type(dtype)
    elif params.init == 'image':
        if params.init_image != None:
            img = init_image.clone()
        else:
            img = content_image.clone()
    img = nn.Parameter(img)
    
    def maybe_print(t, loss):
        if params.print_iter > 0 and t % params.print_iter == 0:
            print("Iteration " + str(t) + " / "+ str(params.num_iterations))
            for i, loss_module in enumerate(content_losses):
                print("  Content " + str(i+1) + " loss: " + str(loss_module.loss.item()))
            for i, loss_module in enumerate(style_losses):
                print("  Style " + str(i+1) + " loss: " + str(loss_module.loss.item()))
            print("  Total loss: " + str(loss.item()))

    #final_image = ''
    def maybe_save(t):
        should_save = params.save_iter > 950 and t % params.save_iter == 0
        should_save = should_save or t == params.num_iterations
        if should_save:
            output_filename, file_extension = os.path.splitext(params.output_image)
            if t == params.num_iterations:
                filename = output_filename + str(file_extension)
            else:
                filename = str(output_filename) + "_" + str(t) + str(file_extension)
            disp = deprocess(img.clone())

            # Maybe perform postprocessing for color-independent style transfer
            if params.original_colors == 1:
                disp = original_colors(deprocess(content_image.clone()), disp)


            disp.save(str(filename))

            return disp

    # Function to evaluate loss and gradient. We run the net forward and
    # backward to get the gradient, and sum up losses from the loss modules.
    # optim.lbfgs internally handles iteration and calls this function many
    # times, so we manually count the number of iterations to handle printing
    # and saving intermediate results.
    num_calls = [0]

    def feval():
        num_calls[0] += 1
        optimizer.zero_grad()
        net(img)
        loss = 0

        for mod in content_losses:
            loss += mod.loss.to(backward_device)
        for mod in style_losses:
            loss += mod.loss.to(backward_device)
        if params.tv_weight > 0:
            for mod in tv_losses:
                loss += mod.loss.to(backward_device)

        loss.backward()

        final_image = maybe_save(num_calls[0])
        maybe_print(num_calls[0], loss)

        return loss
    ##print('the final image is', final_image)
    optimizer, loopVal = setup_optimizer(img)
    while num_calls[0] <= loopVal:
         optimizer.step(feval)

    
# Configure the optimizer
def setup_optimizer(img):
    if params.optimizer == 'lbfgs':
        print("Running optimization with L-BFGS")
        optim_state = {
            'max_iter': params.num_iterations,
            'tolerance_change': -1,
            'tolerance_grad': -1,
        }
        if params.lbfgs_num_correction != 100:
            optim_state['history_size'] = params.lbfgs_num_correction
        optimizer = optim.LBFGS([img], **optim_state)
        loopVal = 1
    elif params.optimizer == 'adam':
        print("Running optimization with ADAM")
        optimizer = optim.Adam([img], lr = params.learning_rate)
        loopVal = params.num_iterations - 1
    return optimizer, loopVal


def setup_gpu():
    def setup_cuda():
        if 'cudnn' in params.backend:
            torch.backends.cudnn.enabled = True
            if params.cudnn_autotune:
                torch.backends.cudnn.benchmark = True
        else:
            torch.backends.cudnn.enabled = False

    def setup_cpu():
        if 'mkl' in params.backend and 'mkldnn' not in params.backend:
            torch.backends.mkl.enabled = True
        elif 'mkldnn' in params.backend:
            raise ValueError("MKL-DNN is not supported yet.")
        elif 'openmp' in params.backend:
            torch.backends.openmp.enabled = True

    multidevice = False
    if "," in str(params.gpu):
        devices = params.gpu.split(',')
        multidevice = True

        if 'c' in str(devices[0]).lower():
            backward_device = "cpu"
            setup_cuda(), setup_cpu()
        else:
            backward_device = "cuda:" + devices[0]
            setup_cuda()
        dtype = torch.FloatTensor

    elif "c" not in str(params.gpu).lower():
        setup_cuda()
        dtype, backward_device = torch.cuda.FloatTensor, "cuda:" + str(params.gpu)
    else:
        setup_cpu()
        dtype, backward_device = torch.FloatTensor, "cpu"
    return dtype, multidevice, backward_device


def setup_multi_device(net):
    assert len(params.gpu.split(',')) - 1 == len(params.multidevice_strategy.split(',')), \
      "The number of -multidevice_strategy layer indices minus 1, must be equal to the number of -gpu devices."

    new_net = ModelParallel(net, params.gpu, params.multidevice_strategy)
    return new_net


# Preprocess an image before passing it to a model.
# We need to rescale from [0, 1] to [0, 255], convert from RGB to BGR,
# and subtract the mean pixel.
def preprocess(image_name, image_size):
    image = Image.open(image_name).convert('RGB')
    if type(image_size) is not tuple:
        image_size = tuple([int((float(image_size) / max(image.size))*x) for x in (image.height, image.width)])
    Loader = transforms.Compose([transforms.Resize(image_size), transforms.ToTensor()])
    rgb2bgr = transforms.Compose([transforms.Lambda(lambda x: x[torch.LongTensor([2,1,0])])])
    Normalize = transforms.Compose([transforms.Normalize(mean=[103.939, 116.779, 123.68], std=[1,1,1])])
    tensor = Normalize(rgb2bgr(Loader(image) * 256)).unsqueeze(0)
    return tensor


#  Undo the above preprocessing.
def deprocess(output_tensor):
    Normalize = transforms.Compose([transforms.Normalize(mean=[-103.939, -116.779, -123.68], std=[1,1,1])])
    bgr2rgb = transforms.Compose([transforms.Lambda(lambda x: x[torch.LongTensor([2,1,0])])])
    output_tensor = bgr2rgb(Normalize(output_tensor.squeeze(0).cpu())) / 256
    output_tensor.clamp_(0, 1)
    Image2PIL = transforms.ToPILImage()
    image = Image2PIL(output_tensor.cpu())
    return image


# Combine the Y channel of the generated image and the UV/CbCr channels of the
# content image to perform color-independent style transfer.
def original_colors(content, generated):
    content_channels = list(content.convert('YCbCr').split())
    generated_channels = list(generated.convert('YCbCr').split())
    content_channels[0] = generated_channels[0]
    return Image.merge('YCbCr', content_channels).convert('RGB')


# Print like Lua/Torch7
def print_torch(net, multidevice):
    if multidevice:
        return
    simplelist = ""
    for i, layer in enumerate(net, 1):
        simplelist = simplelist + "(" + str(i) + ") -> "
    #print("nn.Sequential ( \n  [input -> " + simplelist + "output]")

    def strip(x):
        return str(x).replace(", ",',').replace("(",'').replace(")",'') + ", "
    def n():
        return "  (" + str(i) + "): " + "nn." + str(l).split("(", 1)[0]

    for i, l in enumerate(net, 1):
         if "2d" in str(l):
             ks, st, pd = strip(l.kernel_size), strip(l.stride), strip(l.padding)
             if "Conv2d" in str(l):
                 ch = str(l.in_channels) + " -> " + str(l.out_channels)
                 print(n() + "(" + ch + ", " + (ks).replace(",",'x', 1) + st + pd.replace(", ",')'))
             elif "Pool2d" in str(l):
                 st = st.replace("  ",' ') + st.replace(", ",')')
                 print(n() + "(" + ((ks).replace(",",'x' + ks, 1) + st).replace(", ",','))
         else:
             print(n())
    print(")")


# Divide weights by channel size
def normalize_weights(content_losses, style_losses):
    for n, i in enumerate(content_losses):
        i.strength = i.strength / max(i.target.size())
    for n, i in enumerate(style_losses):
        i.strength = i.strength / max(i.target.size())


# Define an nn Module to compute content loss
class ContentLoss(nn.Module):

    def __init__(self, strength):
        super(ContentLoss, self).__init__()
        self.strength = strength
        self.crit = nn.MSELoss()
        self.mode = 'None'

    def forward(self, input):
        if self.mode == 'loss':
            self.loss = self.crit(input, self.target) * self.strength
        elif self.mode == 'capture':
            self.target = input.detach()
        return input


class GramMatrix(nn.Module):

    def forward(self, input):
        B, C, H, W = input.size()
        x_flat = input.view(C, H * W)
        return torch.mm(x_flat, x_flat.t())


# Define an nn Module to compute style loss
class StyleLoss(nn.Module):

    def __init__(self, strength):
        super(StyleLoss, self).__init__()
        self.target = torch.Tensor()
        self.strength = strength
        self.gram = GramMatrix()
        self.crit = nn.MSELoss()
        self.mode = 'None'
        self.blend_weight = None

    def forward(self, input):
        self.G = self.gram(input)
        self.G = self.G.div(input.nelement())
        if self.mode == 'capture':
            if self.blend_weight == None:
                self.target = self.G.detach()
            elif self.target.nelement() == 0:
                self.target = self.G.detach().mul(self.blend_weight)
            else:
                self.target = self.target.add(self.blend_weight, self.G.detach())
        elif self.mode == 'loss':
            self.loss = self.strength * self.crit(self.G, self.target)
        return input


class TVLoss(nn.Module):

    def __init__(self, strength):
        super(TVLoss, self).__init__()
        self.strength = strength

    def forward(self, input):
        self.x_diff = input[:,:,1:,:] - input[:,:,:-1,:]
        self.y_diff = input[:,:,:,1:] - input[:,:,:,:-1]
        self.loss = self.strength * (torch.sum(torch.abs(self.x_diff)) + torch.sum(torch.abs(self.y_diff)))
        return input


if __name__ == "__main__":
    main()