File size: 23,433 Bytes
4c2e04b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b66741a
4c2e04b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b6b811
4c2e04b
4dfa880
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
import gradio as gr
import torch
import librosa
import numpy as np
import json
import os
import tempfile
import time
from datetime import datetime
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import warnings
warnings.filterwarnings("ignore")

# =============================================================================
# MODEL LOADING AND CONFIGURATION
# =============================================================================

# Configure your model path - UPDATE THIS with your actual model name
MODEL_NAME = "AfroLogicInsect/whisper-finetuned-float32"  # Replace with your HF model

# Global variables for model and processor
model = None
processor = None
model_dtype = None

def load_model():
    """Load the Whisper model and processor"""
    global model, processor, model_dtype
    
    try:
        print(f"πŸ”„ Loading model: {MODEL_NAME}")
        
        # Load processor
        processor = WhisperProcessor.from_pretrained(MODEL_NAME)
        
        # Load model with appropriate dtype
        model = WhisperForConditionalGeneration.from_pretrained(
            MODEL_NAME,
            torch_dtype=torch.float32,  # Use float32 for stability
            device_map="auto" if torch.cuda.is_available() else None
        )
        
        model_dtype = torch.float32
        
        # Move to GPU if available
        if torch.cuda.is_available():
            model = model.cuda()
            print(f"βœ… Model loaded on GPU: {torch.cuda.get_device_name()}")
        else:
            print("βœ… Model loaded on CPU")
            
        return True
        
    except Exception as e:
        print(f"❌ Error loading model: {e}")
        
        # Fallback to base Whisper model
        try:
            print("πŸ”„ Falling back to base Whisper model...")
            fallback_model = "openai/whisper-small"
            
            processor = WhisperProcessor.from_pretrained(fallback_model)
            model = WhisperForConditionalGeneration.from_pretrained(
                fallback_model,
                torch_dtype=torch.float32
            )
            
            model_dtype = torch.float32
            
            if torch.cuda.is_available():
                model = model.cuda()
                
            print(f"βœ… Fallback model loaded: {fallback_model}")
            return True
            
        except Exception as e2:
            print(f"❌ Fallback model loading failed: {e2}")
            return False

# Load model on startup
print("πŸš€ Initializing Whisper Transcription Service...")
model_loaded = load_model()

# =============================================================================
# CORE TRANSCRIPTION FUNCTIONS
# =============================================================================

def transcribe_audio_chunk(audio_chunk, sr=16000):
    """Transcribe a single audio chunk"""
    try:
        # Process with processor
        inputs = processor(
            audio_chunk,
            sampling_rate=sr,
            return_tensors="pt"
        )
        
        input_features = inputs.input_features
        
        # Handle dtype matching
        if model_dtype == torch.float16:
            input_features = input_features.half()
        else:
            input_features = input_features.float()
            
        # Move to same device as model
        input_features = input_features.to(model.device)
        
        # Generate transcription
        with torch.no_grad():
            try:
                predicted_ids = model.generate(
                    input_features,
                    language="en",
                    task="transcribe",
                    max_length=448,
                    num_beams=1,
                    do_sample=False,
                    use_cache=True,
                    no_repeat_ngram_size=2
                )
                
                transcription = processor.batch_decode(
                    predicted_ids,
                    skip_special_tokens=True
                )[0]
                
                return transcription
                
            except RuntimeError as gen_error:
                if "Input type" in str(gen_error) and "bias type" in str(gen_error):
                    # Handle dtype mismatch
                    model.float()
                    input_features = input_features.float()
                    
                    predicted_ids = model.generate(
                        input_features,
                        language="en",
                        task="transcribe",
                        max_length=448,
                        num_beams=1,
                        do_sample=False,
                        no_repeat_ngram_size=2
                    )
                    
                    transcription = processor.batch_decode(
                        predicted_ids,
                        skip_special_tokens=True
                    )[0]
                    
                    return transcription
                else:
                    raise gen_error
                    
    except Exception as e:
        print(f"❌ Chunk transcription failed: {e}")
        return None

def process_audio_with_timestamps(audio_array, sr=16000, chunk_length=15):
    """Process audio with timestamps using robust chunking"""
    try:
        total_duration = len(audio_array) / sr
        
        # Check duration limit (3 minutes = 180 seconds)
        if total_duration > 180:
            return {
                "error": f"⚠️ Audio too long ({total_duration:.1f}s). Maximum allowed: 3 minutes (180s)",
                "success": False
            }
        
        chunk_samples = chunk_length * sr
        overlap_samples = int(2 * sr)  # 2-second overlap
        
        all_segments = []
        start = 0
        chunk_index = 0
        
        progress_updates = []
        
        while start < len(audio_array):
            # Define chunk boundaries
            end = min(start + chunk_samples, len(audio_array))
            
            # Add overlap for better transcription
            chunk_start_with_overlap = max(0, start - overlap_samples // 2)
            chunk_end_with_overlap = min(len(audio_array), end + overlap_samples // 2)
            
            chunk_audio = audio_array[chunk_start_with_overlap:chunk_end_with_overlap]
            
            # Calculate time boundaries
            start_time = start / sr
            end_time = end / sr
            
            # Update progress
            progress = (chunk_index + 1) / max(1, int(np.ceil(len(audio_array) / chunk_samples))) * 100
            progress_updates.append(f"Processing chunk {chunk_index + 1}: {start_time:.1f}s - {end_time:.1f}s ({progress:.0f}%)")
            
            # Transcribe chunk
            transcription = transcribe_audio_chunk(chunk_audio, sr)
            
            if transcription and transcription.strip():
                clean_text = transcription.strip()
                
                segment = {
                    "start": round(start_time, 2),
                    "end": round(end_time, 2),
                    "text": clean_text,
                    "duration": round(end_time - start_time, 2)
                }
                all_segments.append(segment)
            
            # Move to next chunk
            start = end
            chunk_index += 1
        
        # Remove overlaps between segments
        cleaned_segments = remove_segment_overlaps(all_segments)
        
        if cleaned_segments:
            full_text = " ".join([seg["text"] for seg in cleaned_segments])
            
            result = {
                "success": True,
                "text": full_text,
                "segments": cleaned_segments,
                "metadata": {
                    "total_duration": round(total_duration, 2),
                    "num_segments": len(cleaned_segments),
                    "chunk_length": chunk_length,
                    "processing_time": time.time()
                }
            }
            
            return result
        else:
            return {
                "error": "❌ No transcription could be generated",
                "success": False
            }
            
    except Exception as e:
        return {
            "error": f"❌ Processing failed: {str(e)}",
            "success": False
        }

def remove_segment_overlaps(segments):
    """Remove overlapping text between segments"""
    if len(segments) <= 1:
        return segments
    
    cleaned_segments = [segments[0]]
    
    for i in range(1, len(segments)):
        current_segment = segments[i].copy()
        previous_text = cleaned_segments[-1]["text"]
        current_text = current_segment["text"]
        
        # Simple overlap detection
        prev_words = previous_text.lower().split()
        curr_words = current_text.lower().split()
        
        overlap_length = 0
        max_check = min(8, len(prev_words), len(curr_words))
        
        for j in range(1, max_check + 1):
            if prev_words[-j:] == curr_words[:j]:
                overlap_length = j
        
        if overlap_length > 0:
            remaining_words = current_text.split()[overlap_length:]
            if remaining_words:
                current_segment["text"] = " ".join(remaining_words)
                cleaned_segments.append(current_segment)
        else:
            cleaned_segments.append(current_segment)
    
    return cleaned_segments

# =============================================================================
# GRADIO INTERFACE FUNCTIONS
# =============================================================================

def transcribe_file(audio_file):
    """Handle file upload transcription"""
    if not model_loaded:
        return "❌ Model not loaded. Please refresh the page.", None, None
        
    if audio_file is None:
        return "⚠️ Please upload an audio file.", None, None
    
    try:
        # Load audio file
        audio_array, sr = librosa.load(audio_file, sr=16000)
        
        # Check duration
        duration = len(audio_array) / sr
        if duration > 180:  # 3 minutes
            return f"⚠️ Audio too long ({duration:.1f}s). Maximum allowed: 3 minutes.", None, None
        
        # Process with timestamps
        result = process_audio_with_timestamps(audio_array, sr)
        
        if result["success"]:
            # Format output
            formatted_text = format_transcription_output(result)
            
            # Create downloadable files
            json_file = create_json_download(result, audio_file)
            srt_file = create_srt_download(result, audio_file)
            
            return formatted_text, json_file, srt_file
        else:
            return result["error"], None, None
            
    except Exception as e:
        return f"❌ Error processing file: {str(e)}", None, None

def transcribe_microphone(audio_data):
    """Handle microphone recording transcription"""
    if not model_loaded:
        return "❌ Model not loaded. Please refresh the page.", None, None
        
    if audio_data is None:
        return "⚠️ No audio recorded. Please record something first.", None, None
    
    try:
        # Extract sample rate and audio array from Gradio audio data
        sr, audio_array = audio_data
        
        # Convert to float32 and normalize
        if audio_array.dtype != np.float32:
            audio_array = audio_array.astype(np.float32)
            if audio_array.max() > 1.0:
                audio_array = audio_array / 32768.0  # Convert from int16 to float32
        
        # Resample to 16kHz if needed
        if sr != 16000:
            audio_array = librosa.resample(audio_array, orig_sr=sr, target_sr=16000)
            sr = 16000
        
        # Check duration
        duration = len(audio_array) / sr
        if duration > 180:  # 3 minutes
            return f"⚠️ Recording too long ({duration:.1f}s). Maximum allowed: 3 minutes.", None, None
        
        if duration < 0.5:  # Less than 0.5 seconds
            return "⚠️ Recording too short. Please record for at least 0.5 seconds.", None, None
        
        # Process with timestamps
        result = process_audio_with_timestamps(audio_array, sr)
        
        if result["success"]:
            # Format output
            formatted_text = format_transcription_output(result)
            
            # Create downloadable files
            json_file = create_json_download(result, "microphone_recording")
            srt_file = create_srt_download(result, "microphone_recording")
            
            return formatted_text, json_file, srt_file
        else:
            return result["error"], None, None
            
    except Exception as e:
        return f"❌ Error processing recording: {str(e)}", None, None

def format_transcription_output(result):
    """Format transcription result for display"""
    output = []
    
    # Header
    output.append("🎯 TRANSCRIPTION RESULTS")
    output.append("=" * 50)
    
    # Metadata
    metadata = result["metadata"]
    output.append(f"πŸ“Š Duration: {metadata['total_duration']}s")
    output.append(f"πŸ“ Segments: {metadata['num_segments']}")
    output.append("")
    
    # Full text
    output.append("πŸ“„ FULL TRANSCRIPT:")
    output.append("-" * 30)
    output.append(result["text"])
    output.append("")
    
    # Timestamped segments
    output.append("πŸ• TIMESTAMPED SEGMENTS:")
    output.append("-" * 30)
    
    for i, segment in enumerate(result["segments"], 1):
        start_min = int(segment["start"] // 60)
        start_sec = int(segment["start"] % 60)
        end_min = int(segment["end"] // 60)
        end_sec = int(segment["end"] % 60)
        
        time_str = f"{start_min:02d}:{start_sec:02d} - {end_min:02d}:{end_sec:02d}"
        output.append(f"{i:2d}. [{time_str}] {segment['text']}")
    
    return "\n".join(output)

def create_json_download(result, source_name):
    """Create JSON file for download"""
    try:
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"transcription_{timestamp}.json"
        
        # Add metadata
        result["metadata"]["source"] = os.path.basename(str(source_name))
        result["metadata"]["generated_at"] = datetime.now().isoformat()
        result["metadata"]["model"] = MODEL_NAME
        
        with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False, encoding='utf-8') as f:
            json.dump(result, f, indent=2, ensure_ascii=False)
            return f.name
            
    except Exception as e:
        print(f"Error creating JSON download: {e}")
        return None

def create_srt_download(result, source_name):
    """Create SRT subtitle file for download"""
    try:
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"subtitles_{timestamp}.srt"
        
        srt_content = []
        for i, segment in enumerate(result["segments"], 1):
            start_time = format_time_srt(segment["start"])
            end_time = format_time_srt(segment["end"])
            
            srt_content.extend([
                str(i),
                f"{start_time} --> {end_time}",
                segment["text"],
                ""
            ])
        
        with tempfile.NamedTemporaryFile(mode='w', suffix='.srt', delete=False, encoding='utf-8') as f:
            f.write("\n".join(srt_content))
            return f.name
            
    except Exception as e:
        print(f"Error creating SRT download: {e}")
        return None

def format_time_srt(seconds):
    """Format seconds to SRT time format"""
    hours = int(seconds // 3600)
    minutes = int((seconds % 3600) // 60)
    secs = int(seconds % 60)
    millis = int((seconds % 1) * 1000)
    return f"{hours:02d}:{minutes:02d}:{secs:02d},{millis:03d}"

# =============================================================================
# GRADIO INTERFACE
# =============================================================================

def create_gradio_interface():
    """Create the Gradio interface"""
    
    # Custom CSS for better styling
    css = """
    .gradio-container {
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
    }
    
    .title {
        text-align: center;
        color: #2d3748;
        margin-bottom: 2rem;
    }
    
    .subtitle {
        text-align: center;
        color: #4a5568;
        margin-bottom: 1rem;
    }
    
    .output-text {
        font-family: 'Courier New', monospace;
        background-color: #f7fafc;
        padding: 1rem;
        border-radius: 8px;
        border: 1px solid #e2e8f0;
    }
    
    .warning {
        background-color: #fff3cd;
        border: 1px solid #ffeaa7;
        color: #856404;
        padding: 10px;
        border-radius: 4px;
        margin: 10px 0;
    }
    """
    
    with gr.Blocks(css=css, title="πŸŽ™οΈ Whisper Speech Transcription") as interface:
        
        # Header
        gr.HTML("""
        <div class="title">
            <h1>πŸŽ™οΈ Whisper Speech Transcription</h1>
            <p class="subtitle">Upload an audio file or record your voice to get an AI-powered transcription with timestamps</p>
        </div>
        """)
        
        # Warning about limits
        gr.HTML("""
        <div class="warning">
            <strong>⚠️ Important:</strong> Maximum audio length is 3 minutes (180 seconds). 
            Longer files will be rejected to ensure fair usage for all users.
        </div>
        """)
        
        # Model status
        status_color = "green" if model_loaded else "red"
        status_text = "βœ… Model loaded and ready" if model_loaded else "❌ Model loading failed"
        gr.HTML(f'<p style="color: {status_color}; text-align: center;"><strong>{status_text}</strong></p>')
        
        with gr.Tabs():
            
            # Tab 1: File Upload
            with gr.TabItem("πŸ“ Upload Audio File"):
                with gr.Row():
                    with gr.Column():
                        audio_file_input = gr.Audio(
                            label="Upload Audio File",
                            type="filepath",
                            sources=["upload"]
                        )
                        
                        file_transcribe_btn = gr.Button(
                            "πŸš€ Transcribe File", 
                            variant="primary",
                            size="lg"
                        )
                
                with gr.Row():
                    file_output = gr.Textbox(
                        label="Transcription Results",
                        lines=15,
                        placeholder="Your transcription will appear here...",
                        elem_classes=["output-text"]
                    )
                
                with gr.Row():
                    with gr.Column():
                        json_download = gr.File(
                            label="πŸ“„ Download JSON",
                            visible=False
                        )
                    with gr.Column():
                        srt_download = gr.File(
                            label="πŸ“„ Download SRT Subtitles", 
                            visible=False
                        )
            
            # Tab 2: Voice Recording
            with gr.TabItem("🎀 Record Voice"):
                with gr.Row():
                    with gr.Column():
                        audio_mic_input = gr.Audio(
                            label="Record Your Voice",
                            sources=["microphone"],
                            type="numpy"
                        )
                        
                        mic_transcribe_btn = gr.Button(
                            "πŸš€ Transcribe Recording", 
                            variant="primary",
                            size="lg"
                        )
                
                with gr.Row():
                    mic_output = gr.Textbox(
                        label="Transcription Results",
                        lines=15,
                        placeholder="Your transcription will appear here...",
                        elem_classes=["output-text"]
                    )
                
                with gr.Row():
                    with gr.Column():
                        json_download_mic = gr.File(
                            label="πŸ“„ Download JSON",
                            visible=False
                        )
                    with gr.Column():
                        srt_download_mic = gr.File(
                            label="πŸ“„ Download SRT Subtitles",
                            visible=False
                        )
        
        # Footer
        gr.HTML("""
        <div style="text-align: center; margin-top: 2rem; padding: 1rem; background-color: #f8f9fa; border-radius: 8px;">
            <h3>πŸ“‹ Output Formats</h3>
            <p><strong>JSON:</strong> Complete transcription data with timestamps and metadata</p>
            <p><strong>SRT:</strong> Standard subtitle format for video players</p>
            <p><strong>Display:</strong> Formatted text with timestamped segments</p>
            <br>
            <p style="color: #6c757d; font-size: 0.9em;">
                Powered by Whisper AI | Maximum 3 minutes per audio | English language optimized
            </p>
        </div>
        """)
        
        # Event handlers
        def update_file_outputs(result_text, json_file, srt_file):
            json_visible = json_file is not None
            srt_visible = srt_file is not None
            return (
                result_text,
                gr.update(value=json_file, visible=json_visible),
                gr.update(value=srt_file, visible=srt_visible)
            )
        
        file_transcribe_btn.click(
            fn=transcribe_file,
            inputs=[audio_file_input],
            outputs=[file_output, json_download, srt_download]
        ).then(
            fn=update_file_outputs,
            inputs=[file_output, json_download, srt_download],
            outputs=[file_output, json_download, srt_download]
        )
        
        mic_transcribe_btn.click(
            fn=transcribe_microphone,
            inputs=[audio_mic_input],
            outputs=[mic_output, json_download_mic, srt_download_mic]
        ).then(
            fn=update_file_outputs,
            inputs=[mic_output, json_download_mic, srt_download_mic],
            outputs=[mic_output, json_download_mic, srt_download_mic]
        )
    
    return interface

# =============================================================================
# LAUNCH APPLICATION
# =============================================================================

if __name__ == "__main__":
    # Create and launch the interface
    interface = create_gradio_interface()
    
    # Launch configuration
    interface.launch(
        share=True,  # Creates a public URL
        server_name="0.0.0.0",  # Allows external access
        server_port=7860,  # Standard Gradio port
        show_error=True,
        # enable_queue=True,  # Handle multiple users
        max_threads=10  # Limit concurrent processing
    )