File size: 7,684 Bytes
c173d9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import base64
import logging
import math
import tempfile
import time
from typing import Optional, Tuple

import fastapi
import jax.numpy as jnp
import numpy as np
import yt_dlp as youtube_dl
from jax.experimental.compilation_cache import compilation_cache as cc
from pydantic import BaseModel
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
from transformers.pipelines.audio_utils import ffmpeg_read

from whisper_jax import FlaxWhisperPipline

cc.initialize_cache("./jax_cache")
checkpoint = "openai/whisper-large-v3"

BATCH_SIZE = 32
CHUNK_LENGTH_S = 30
NUM_PROC = 32
FILE_LIMIT_MB = 10000
YT_LENGTH_LIMIT_S = 15000  # limit to 2 hour YouTube files

logger = logging.getLogger("whisper-jax-app")
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
ch.setFormatter(formatter)
logger.addHandler(ch)

pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE)
stride_length_s = CHUNK_LENGTH_S / 6
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate)
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate)
step = chunk_len - stride_left - stride_right

# do a pre-compile step so that the first user to use the demo isn't hit with a long transcription time
logger.info("compiling forward call...")
start = time.time()
random_inputs = {
    "input_features": np.ones(
        (BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions)
    )
}
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True)
compile_time = time.time() - start
logger.info(f"compiled in {compile_time}s")

app = fastapi.FastAPI()

class TranscriptionRequest(BaseModel):
    audio_file: str
    task: str = "transcribe"
    return_timestamps: bool = False

class TranscriptionResponse(BaseModel):
    transcription: str
    runtime: float

@app.post("/transcribe", response_model=TranscriptionResponse)
def transcribe_audio(request: TranscriptionRequest):
    logger.info("loading audio file...")
    if not request.audio_file:
        logger.warning("No audio file")
        raise fastapi.HTTPException(status_code=400, detail="No audio file submitted!")

    audio_bytes = base64.b64decode(request.audio_file)
    file_size_mb = len(audio_bytes) / (1024 * 1024)
    if file_size_mb > FILE_LIMIT_MB:
        logger.warning("Max file size exceeded")
        raise fastapi.HTTPException(
            status_code=400,
            detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.",
        )

    inputs = ffmpeg_read(audio_bytes, pipeline.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
    logger.info("done loading")
    text, runtime = _tqdm_generate(inputs, task=request.task, return_timestamps=request.return_timestamps)
    return TranscriptionResponse(transcription=text, runtime=runtime)

@app.post("/transcribe_youtube")
def transcribe_youtube(
    yt_url: str, task: str = "transcribe", return_timestamps: bool = False
) -> Tuple[str, str, float]:
    logger.info("loading youtube file...")
    html_embed_str = _return_yt_html_embed(yt_url)
    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        _download_yt_audio(yt_url, filepath)

        with open(filepath, "rb") as f:
            inputs = f.read()

    inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
    logger.info("done loading...")
    text, runtime = _tqdm_generate(inputs, task=task, return_timestamps=return_timestamps)
    return html_embed_str, text, runtime

def _tqdm_generate(inputs: dict, task: str, return_timestamps: bool, progress: Optional[fastapi.ProgressBar] = None):
    inputs_len = inputs["array"].shape[0]
    all_chunk_start_idx = np.arange(0, inputs_len, step)
    num_samples = len(all_chunk_start_idx)
    num_batches = math.ceil(num_samples / BATCH_SIZE)

    dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE)
    model_outputs = []
    start_time = time.time()
    logger.info("transcribing...")
    # iterate over our chunked audio samples - always predict timestamps to reduce hallucinations
    for batch, _ in zip(dataloader, range(num_batches)):
        model_outputs.append(pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True))
    runtime = time.time() - start_time
    logger.info("done transcription")

    logger.info("post-processing...")
    post_processed = pipeline.postprocess(model_outputs, return_timestamps=True)
    text = post_processed["text"]
    if return_timestamps:
        timestamps = post_processed.get("chunks")
        timestamps = [
            f"[{_format_timestamp(chunk['timestamp'][0])} -> {_format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
            for chunk in timestamps
        ]
        text = "\n".join(str(feature) for feature in timestamps)
    logger.info("done post-processing")
    return text, runtime

def _return_yt_html_embed(yt_url: str) -> str:
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str

def _download_yt_audio(yt_url: str, filename: str):
    info_loader = youtube_dl.YoutubeDL()
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise fastapi.HTTPException(status_code=400, detail=str(err))

    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)

    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise fastapi.HTTPException(
            status_code=400,
            detail=f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.",
        )

    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise fastapi.HTTPException(status_code=400, detail=str(err))

def _format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
    if seconds is not None:
        milliseconds = round(seconds * 1000.0)

        hours = milliseconds // 3_600_000
        milliseconds -= hours * 3_600_000

        minutes = milliseconds // 60_000
        milliseconds -= minutes * 60_000

        seconds = milliseconds // 1_000
        milliseconds -= seconds * 1_000

        hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
        return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
    else:
        # we have a malformed timestamp so just return it as is
        return seconds