Spaces:
Runtime error
Runtime error
File size: 7,254 Bytes
c173d9b 8da2b37 c173d9b 8da2b37 c173d9b 8da2b37 2ecbad4 8da2b37 c173d9b 8da2b37 c173d9b 8da2b37 c173d9b 8da2b37 2ecbad4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import logging
import math
import os
import tempfile
import time
import yt_dlp as youtube_dl
from fastapi import FastAPI, UploadFile, Form, HTTPException
from fastapi.responses import HTMLResponse
import jax.numpy as jnp
import numpy as np
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
from transformers.pipelines.audio_utils import ffmpeg_read
from whisper_jax import FlaxWhisperPipline
app = FastAPI(title="Whisper JAX: The Fastest Whisper API ⚡️")
logger = logging.getLogger("whisper-jax-app")
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
ch.setFormatter(formatter)
logger.addHandler(ch)
checkpoint = "openai/whisper-large-v3"
BATCH_SIZE = 32
CHUNK_LENGTH_S = 30
NUM_PROC = 32
FILE_LIMIT_MB = 10000
YT_LENGTH_LIMIT_S = 15000 # limit to 2 hour YouTube files
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE)
stride_length_s = CHUNK_LENGTH_S / 6
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate)
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate)
step = chunk_len - stride_left - stride_right
# do a pre-compile step so that the first user to use the demo isn't hit with a long transcription time
logger.info("compiling forward call...")
start = time.time()
random_inputs = {
"input_features": np.ones(
(BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions)
)
}
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True)
compile_time = time.time() - start
logger.info(f"compiled in {compile_time}s")
@app.post("/transcribe_audio")
async def transcribe_chunked_audio(audio_file: UploadFile, task: str = "transcribe", return_timestamps: bool = False):
logger.info("loading audio file...")
if not audio_file:
logger.warning("No audio file")
raise HTTPException(status_code=400, detail="No audio file submitted!")
file_size_mb = os.stat(audio_file.filename).st_size / (1024 * 1024)
if file_size_mb > FILE_LIMIT_MB:
logger.warning("Max file size exceeded")
raise HTTPException(status_code=400, detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.")
with open(audio_file.filename, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
logger.info("done loading")
text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps)
return {"text": text, "runtime": runtime}
@app.post("/transcribe_youtube")
async def transcribe_youtube(yt_url: str = Form(...), task: str = "transcribe", return_timestamps: bool = False):
logger.info("loading youtube file...")
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
logger.info("done loading...")
text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps)
return {"html_embed": html_embed_str, "text": text, "runtime": runtime}
def tqdm_generate(inputs: dict, task: str, return_timestamps: bool):
inputs_len = inputs["array"].shape[0]
all_chunk_start_idx = np.arange(0, inputs_len, step)
num_samples = len(all_chunk_start_idx)
num_batches = math.ceil(num_samples / BATCH_SIZE)
dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE)
model_outputs = []
start_time = time.time()
logger.info("transcribing...")
# iterate over our chunked audio samples - always predict timestamps to reduce hallucinations
for batch in dataloader:
model_outputs.append(pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True))
runtime = time.time() - start_time
logger.info("done transcription")
logger.info("post-processing...")
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True)
text = post_processed["text"]
if return_timestamps:
timestamps = post_processed.get("chunks")
timestamps = [
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
for chunk in timestamps
]
text = "\n".join(str(feature) for feature in timestamps)
logger.info("done post-processing")
return text, runtime
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise HTTPException(status_code=400, detail=str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise HTTPException(status_code=400, detail=f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise HTTPException(status_code=400, detail=str(err))
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
if seconds is not None:
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
else:
# we have a malformed timestamp so just return it as is
return seconds |