File size: 10,359 Bytes
10b5661 4ec8ad4 10b5661 85d2f78 c8ee59e e2524e7 00759b9 e2524e7 4ec8ad4 10b5661 e2524e7 10b5661 c8ee59e 4ec8ad4 85d2f78 e2524e7 00759b9 e2524e7 85d2f78 00759b9 10b5661 00759b9 10b5661 00759b9 85d2f78 00759b9 85d2f78 00759b9 88efb3f e2524e7 00759b9 10b5661 00759b9 88efb3f 00759b9 88efb3f 2d89b4e 64a9ffc 2d89b4e 4ec8ad4 417694d e8dabed 417694d f6a3081 e8dabed f6a3081 e8dabed 18f5cd8 e8dabed 07eb181 18f5cd8 417694d 4ec8ad4 417694d e8dabed 417694d 00759b9 417694d 2d89b4e 00759b9 e8dabed 2d89b4e 07eb181 18f5cd8 2d89b4e 00759b9 e637753 00759b9 6d8af26 2d89b4e 00759b9 6d8af26 00759b9 2d89b4e 4ec8ad4 e8dabed 4ec8ad4 10b5661 e2524e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import os
import base64
import gradio as gr
from PIL import Image
import io
import json
from groq import Groq
import logging
import cv2
import numpy as np
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Load environment variables
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
if not GROQ_API_KEY:
logger.error("GROQ_API_KEY is not set in environment variables")
raise ValueError("GROQ_API_KEY is not set")
# Initialize Groq client
client = Groq(api_key=GROQ_API_KEY)
def encode_image(image):
try:
if isinstance(image, str): # If image is a file path
with open(image, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
elif isinstance(image, Image.Image): # If image is a PIL Image
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
elif isinstance(image, np.ndarray): # If image is a numpy array (from video)
is_success, buffer = cv2.imencode(".png", image)
if is_success:
return base64.b64encode(buffer).decode('utf-8')
else:
raise ValueError(f"Unsupported image type: {type(image)}")
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
raise
def analyze_construction_image(images, video=None):
if not images and video is None:
logger.warning("No images or video provided")
return [("No input", "Error: Please upload images or a video for analysis.")]
try:
logger.info("Starting analysis")
results = []
if images:
for i, image in enumerate(images):
image_data_url = f"data:image/png;base64,{encode_image(image)}"
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": f"Analyze this construction site image (Image {i+1}/{len(images)}). Identify any safety issues or hazards, categorize them, provide a detailed description, and suggest steps to resolve them."
},
{
"type": "image_url",
"image_url": {
"url": image_data_url
}
}
]
}
]
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=messages,
temperature=0.7,
max_tokens=1000,
top_p=1,
stream=False,
stop=None
)
result = completion.choices[0].message.content
results.append((f"Image {i+1} analysis", result))
if video:
cap = cv2.VideoCapture(video.name)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
duration = frame_count / fps
# Analyze frames at 0%, 25%, 50%, 75%, and 100% of the video duration
for i, time_point in enumerate([0, 0.25, 0.5, 0.75, 1]):
cap.set(cv2.CAP_PROP_POS_MSEC, time_point * duration * 1000)
ret, frame = cap.read()
if ret:
image_data_url = f"data:image/png;base64,{encode_image(frame)}"
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": f"Analyze this frame from a construction site video (Frame {i+1}/5 at {time_point*100}% of video duration). Identify any safety issues or hazards, categorize them, provide a detailed description, and suggest steps to resolve them."
},
{
"type": "image_url",
"image_url": {
"url": image_data_url
}
}
]
}
]
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=messages,
temperature=0.7,
max_tokens=1000,
top_p=1,
stream=False,
stop=None
)
result = completion.choices[0].message.content
results.append((f"Video frame {i+1} analysis", result))
cap.release()
logger.info("Analysis completed successfully")
return results
except Exception as e:
logger.error(f"Error during analysis: {str(e)}")
logger.error(traceback.format_exc())
error_message = f"Error during analysis: {str(e)}. Please try again or contact support if the issue persists."
return [("Analysis error", error_message)]
def chat_about_image(message, chat_history):
try:
# Prepare the conversation history for the API
messages = [
{"role": "system", "content": "You are an AI assistant specialized in analyzing construction site images and answering questions about them. Use the information from the initial analysis to answer user queries."},
]
# Add chat history to messages
for human, ai in chat_history:
if human:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
# Add the new user message
messages.append({"role": "user", "content": message})
# Make API call
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=messages,
temperature=0.7,
max_tokens=500,
top_p=1,
stream=False,
stop=None
)
response = completion.choices[0].message.content
chat_history.append((message, response))
return "", chat_history
except Exception as e:
logger.error(f"Error during chat: {str(e)}")
return "", chat_history + [(message, f"Error: {str(e)}")]
# Custom CSS for improved styling
custom_css = """
.container { max-width: 1200px; margin: auto; padding-top: 1.5rem; }
.header { text-align: center; margin-bottom: 1rem; }
.header h1 { color: #2c3e50; font-size: 2.5rem; }
.subheader {
color: #34495e;
font-size: 1rem;
line-height: 1.2;
margin-bottom: 1.5rem;
text-align: center;
padding: 0 15px;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
.image-container { border: 2px dashed #3498db; border-radius: 10px; padding: 1rem; text-align: center; }
.analyze-button { background-color: #2ecc71 !important; color: white !important; }
.clear-button { background-color: #e74c3c !important; color: white !important; width: 100px !important; }
.chatbot { border: 1px solid #bdc3c7; border-radius: 10px; padding: 1rem; height: 400px; overflow-y: auto; }
.chat-input { border: 1px solid #bdc3c7; border-radius: 5px; padding: 0.5rem; }
.groq-badge { position: fixed; bottom: 10px; right: 10px; background-color: #f39c12; color: white; padding: 5px 10px; border-radius: 5px; font-weight: bold; }
.chat-container { display: flex; flex-direction: column; }
.input-row { display: flex; align-items: center; margin-top: 10px; }
.input-row > div:first-child { flex-grow: 1; margin-right: 10px; }
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
gr.HTML(
"""
<div class="container">
<div class="header">
<h1>🏗️ Construction Site Safety Analyzer</h1>
</div>
<p class="subheader">Enhance workplace safety and compliance with AI-powered image and video analysis using Llama 3.2 90B Vision and expert chat assistance.</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.File(label="Upload Construction Site Images", file_count="multiple", type="file", elem_classes="image-container")
video_input = gr.Video(label="Upload Construction Site Video", elem_classes="image-container")
analyze_button = gr.Button("🔍 Analyze Safety Hazards", elem_classes="analyze-button")
with gr.Column(scale=2):
with gr.Group(elem_classes="chat-container"):
chatbot = gr.Chatbot(label="Safety Analysis Results and Expert Chat", elem_classes="chatbot")
with gr.Row(elem_classes="input-row"):
msg = gr.Textbox(
label="Ask about safety measures or regulations",
placeholder="E.g., 'What OSHA guidelines apply to this hazard?'",
show_label=False,
elem_classes="chat-input"
)
clear = gr.Button("🗑️ Clear", elem_classes="clear-button")
def update_chat(history, new_messages):
history = history or []
history.extend(new_messages)
return history
analyze_button.click(
analyze_construction_image,
inputs=[image_input, video_input],
outputs=[chatbot],
postprocess=lambda x: update_chat(chatbot.value, x)
)
msg.submit(chat_about_image, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
gr.HTML(
"""
<div class="groq-badge">Powered by Groq</div>
"""
)
# Launch the app
if __name__ == "__main__":
iface.launch(debug=True) |