File size: 10,359 Bytes
10b5661
 
4ec8ad4
 
10b5661
85d2f78
c8ee59e
e2524e7
00759b9
 
e2524e7
 
 
 
4ec8ad4
10b5661
 
e2524e7
 
 
10b5661
c8ee59e
 
4ec8ad4
85d2f78
e2524e7
 
 
 
 
 
 
 
00759b9
 
 
 
e2524e7
 
 
 
 
85d2f78
00759b9
 
 
 
10b5661
 
00759b9
 
10b5661
00759b9
 
 
 
85d2f78
00759b9
 
 
 
 
 
 
 
 
 
 
 
 
85d2f78
 
00759b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88efb3f
e2524e7
00759b9
10b5661
00759b9
88efb3f
 
00759b9
88efb3f
2d89b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64a9ffc
2d89b4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ec8ad4
417694d
e8dabed
417694d
f6a3081
 
e8dabed
f6a3081
 
 
 
 
 
 
 
 
 
 
e8dabed
 
18f5cd8
e8dabed
 
 
07eb181
 
18f5cd8
417694d
 
4ec8ad4
417694d
 
 
 
 
e8dabed
417694d
00759b9
417694d
 
 
 
2d89b4e
 
00759b9
 
e8dabed
2d89b4e
07eb181
 
 
18f5cd8
 
 
 
 
 
 
2d89b4e
00759b9
e637753
00759b9
6d8af26
 
2d89b4e
 
00759b9
6d8af26
00759b9
2d89b4e
 
 
 
4ec8ad4
e8dabed
 
 
 
 
 
4ec8ad4
10b5661
e2524e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import base64
import gradio as gr
from PIL import Image
import io
import json
from groq import Groq
import logging
import cv2
import numpy as np

# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Load environment variables
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
if not GROQ_API_KEY:
    logger.error("GROQ_API_KEY is not set in environment variables")
    raise ValueError("GROQ_API_KEY is not set")

# Initialize Groq client
client = Groq(api_key=GROQ_API_KEY)

def encode_image(image):
    try:
        if isinstance(image, str):  # If image is a file path
            with open(image, "rb") as image_file:
                return base64.b64encode(image_file.read()).decode('utf-8')
        elif isinstance(image, Image.Image):  # If image is a PIL Image
            buffered = io.BytesIO()
            image.save(buffered, format="PNG")
            return base64.b64encode(buffered.getvalue()).decode('utf-8')
        elif isinstance(image, np.ndarray):  # If image is a numpy array (from video)
            is_success, buffer = cv2.imencode(".png", image)
            if is_success:
                return base64.b64encode(buffer).decode('utf-8')
        else:
            raise ValueError(f"Unsupported image type: {type(image)}")
    except Exception as e:
        logger.error(f"Error encoding image: {str(e)}")
        raise

def analyze_construction_image(images, video=None):
    if not images and video is None:
        logger.warning("No images or video provided")
        return [("No input", "Error: Please upload images or a video for analysis.")]

    try:
        logger.info("Starting analysis")
        results = []

        if images:
            for i, image in enumerate(images):
                image_data_url = f"data:image/png;base64,{encode_image(image)}"
                messages = [
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "text",
                                "text": f"Analyze this construction site image (Image {i+1}/{len(images)}). Identify any safety issues or hazards, categorize them, provide a detailed description, and suggest steps to resolve them."
                            },
                            {
                                "type": "image_url",
                                "image_url": {
                                    "url": image_data_url
                                }
                            }
                        ]
                    }
                ]
                completion = client.chat.completions.create(
                    model="llama-3.2-90b-vision-preview",
                    messages=messages,
                    temperature=0.7,
                    max_tokens=1000,
                    top_p=1,
                    stream=False,
                    stop=None
                )
                result = completion.choices[0].message.content
                results.append((f"Image {i+1} analysis", result))

        if video:
            cap = cv2.VideoCapture(video.name)
            frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
            fps = int(cap.get(cv2.CAP_PROP_FPS))
            duration = frame_count / fps
            
            # Analyze frames at 0%, 25%, 50%, 75%, and 100% of the video duration
            for i, time_point in enumerate([0, 0.25, 0.5, 0.75, 1]):
                cap.set(cv2.CAP_PROP_POS_MSEC, time_point * duration * 1000)
                ret, frame = cap.read()
                if ret:
                    image_data_url = f"data:image/png;base64,{encode_image(frame)}"
                    messages = [
                        {
                            "role": "user",
                            "content": [
                                {
                                    "type": "text",
                                    "text": f"Analyze this frame from a construction site video (Frame {i+1}/5 at {time_point*100}% of video duration). Identify any safety issues or hazards, categorize them, provide a detailed description, and suggest steps to resolve them."
                                },
                                {
                                    "type": "image_url",
                                    "image_url": {
                                        "url": image_data_url
                                    }
                                }
                            ]
                        }
                    ]
                    completion = client.chat.completions.create(
                        model="llama-3.2-90b-vision-preview",
                        messages=messages,
                        temperature=0.7,
                        max_tokens=1000,
                        top_p=1,
                        stream=False,
                        stop=None
                    )
                    result = completion.choices[0].message.content
                    results.append((f"Video frame {i+1} analysis", result))
            cap.release()

        logger.info("Analysis completed successfully")
        return results
    except Exception as e:
        logger.error(f"Error during analysis: {str(e)}")
        logger.error(traceback.format_exc())
        error_message = f"Error during analysis: {str(e)}. Please try again or contact support if the issue persists."
        return [("Analysis error", error_message)]
        
def chat_about_image(message, chat_history):
    try:
        # Prepare the conversation history for the API
        messages = [
            {"role": "system", "content": "You are an AI assistant specialized in analyzing construction site images and answering questions about them. Use the information from the initial analysis to answer user queries."},
        ]
        
        # Add chat history to messages
        for human, ai in chat_history:
            if human:
                messages.append({"role": "user", "content": human})
            if ai:
                messages.append({"role": "assistant", "content": ai})
        
        # Add the new user message
        messages.append({"role": "user", "content": message})
        
        # Make API call
        completion = client.chat.completions.create(
            model="llama-3.2-90b-vision-preview",
            messages=messages,
            temperature=0.7,
            max_tokens=500,
            top_p=1,
            stream=False,
            stop=None
        )
        
        response = completion.choices[0].message.content
        chat_history.append((message, response))
        
        return "", chat_history
    except Exception as e:
        logger.error(f"Error during chat: {str(e)}")
        return "", chat_history + [(message, f"Error: {str(e)}")]


# Custom CSS for improved styling
custom_css = """
.container { max-width: 1200px; margin: auto; padding-top: 1.5rem; }
.header { text-align: center; margin-bottom: 1rem; }
.header h1 { color: #2c3e50; font-size: 2.5rem; }
.subheader { 
    color: #34495e; 
    font-size: 1rem; 
    line-height: 1.2; 
    margin-bottom: 1.5rem; 
    text-align: center; 
    padding: 0 15px;
    white-space: nowrap;
    overflow: hidden;
    text-overflow: ellipsis;
}
.image-container { border: 2px dashed #3498db; border-radius: 10px; padding: 1rem; text-align: center; }
.analyze-button { background-color: #2ecc71 !important; color: white !important; }
.clear-button { background-color: #e74c3c !important; color: white !important; width: 100px !important; }
.chatbot { border: 1px solid #bdc3c7; border-radius: 10px; padding: 1rem; height: 400px; overflow-y: auto; }
.chat-input { border: 1px solid #bdc3c7; border-radius: 5px; padding: 0.5rem; }
.groq-badge { position: fixed; bottom: 10px; right: 10px; background-color: #f39c12; color: white; padding: 5px 10px; border-radius: 5px; font-weight: bold; }
.chat-container { display: flex; flex-direction: column; }
.input-row { display: flex; align-items: center; margin-top: 10px; }
.input-row > div:first-child { flex-grow: 1; margin-right: 10px; }
"""

# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as iface:
    gr.HTML(
        """
        <div class="container">
            <div class="header">
                <h1>🏗️ Construction Site Safety Analyzer</h1>
            </div>
            <p class="subheader">Enhance workplace safety and compliance with AI-powered image and video analysis using Llama 3.2 90B Vision and expert chat assistance.</p>
        </div>
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.File(label="Upload Construction Site Images", file_count="multiple", type="file", elem_classes="image-container")
            video_input = gr.Video(label="Upload Construction Site Video", elem_classes="image-container")
            analyze_button = gr.Button("🔍 Analyze Safety Hazards", elem_classes="analyze-button")
        with gr.Column(scale=2):
            with gr.Group(elem_classes="chat-container"):
                chatbot = gr.Chatbot(label="Safety Analysis Results and Expert Chat", elem_classes="chatbot")
                with gr.Row(elem_classes="input-row"):
                    msg = gr.Textbox(
                        label="Ask about safety measures or regulations",
                        placeholder="E.g., 'What OSHA guidelines apply to this hazard?'",
                        show_label=False,
                        elem_classes="chat-input"
                    )
                    clear = gr.Button("🗑️ Clear", elem_classes="clear-button")

    def update_chat(history, new_messages):
        history = history or []
        history.extend(new_messages)
        return history

    analyze_button.click(
        analyze_construction_image,
        inputs=[image_input, video_input],
        outputs=[chatbot],
        postprocess=lambda x: update_chat(chatbot.value, x)
    )

    msg.submit(chat_about_image, [msg, chatbot], [msg, chatbot])
    clear.click(lambda: None, None, chatbot, queue=False)

    gr.HTML(
        """
        <div class="groq-badge">Powered by Groq</div>
        """
    )

# Launch the app
if __name__ == "__main__":
    iface.launch(debug=True)