File size: 6,285 Bytes
ece766c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from typing import List, Union

import torch
from PIL import Image
from transformers import (
    CLIPProcessor,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)

from diffusers import StableDiffusionPipeline
from .lora import patch_pipe, tune_lora_scale, _text_lora_path, _ti_lora_path
import os
import glob
import math

EXAMPLE_PROMPTS = [
    "<obj> swimming in a pool",
    "<obj> at a beach with a view of seashore",
    "<obj> in times square",
    "<obj> wearing sunglasses",
    "<obj> in a construction outfit",
    "<obj> playing with a ball",
    "<obj> wearing headphones",
    "<obj> oil painting ghibli inspired",
    "<obj> working on the laptop",
    "<obj> with mountains and sunset in background",
    "Painting of <obj> at a beach by artist claude monet",
    "<obj> digital painting 3d render geometric style",
    "A screaming <obj>",
    "A depressed <obj>",
    "A sleeping <obj>",
    "A sad <obj>",
    "A joyous <obj>",
    "A frowning <obj>",
    "A sculpture of <obj>",
    "<obj> near a pool",
    "<obj> at a beach with a view of seashore",
    "<obj> in a garden",
    "<obj> in grand canyon",
    "<obj> floating in ocean",
    "<obj> and an armchair",
    "A maple tree on the side of <obj>",
    "<obj> and an orange sofa",
    "<obj> with chocolate cake on it",
    "<obj> with a vase of rose flowers on it",
    "A digital illustration of <obj>",
    "Georgia O'Keeffe style <obj> painting",
    "A watercolor painting of <obj> on a beach",
]


def image_grid(_imgs, rows=None, cols=None):

    if rows is None and cols is None:
        rows = cols = math.ceil(len(_imgs) ** 0.5)

    if rows is None:
        rows = math.ceil(len(_imgs) / cols)
    if cols is None:
        cols = math.ceil(len(_imgs) / rows)

    w, h = _imgs[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(_imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


def text_img_alignment(img_embeds, text_embeds, target_img_embeds):
    # evaluation inspired from textual inversion paper
    # https://arxiv.org/abs/2208.01618

    # text alignment
    assert img_embeds.shape[0] == text_embeds.shape[0]
    text_img_sim = (img_embeds * text_embeds).sum(dim=-1) / (
        img_embeds.norm(dim=-1) * text_embeds.norm(dim=-1)
    )

    # image alignment
    img_embed_normalized = img_embeds / img_embeds.norm(dim=-1, keepdim=True)

    avg_target_img_embed = (
        (target_img_embeds / target_img_embeds.norm(dim=-1, keepdim=True))
        .mean(dim=0)
        .unsqueeze(0)
        .repeat(img_embeds.shape[0], 1)
    )

    img_img_sim = (img_embed_normalized * avg_target_img_embed).sum(dim=-1)

    return {
        "text_alignment_avg": text_img_sim.mean().item(),
        "image_alignment_avg": img_img_sim.mean().item(),
        "text_alignment_all": text_img_sim.tolist(),
        "image_alignment_all": img_img_sim.tolist(),
    }


def prepare_clip_model_sets(eval_clip_id: str = "openai/clip-vit-large-patch14"):
    text_model = CLIPTextModelWithProjection.from_pretrained(eval_clip_id)
    tokenizer = CLIPTokenizer.from_pretrained(eval_clip_id)
    vis_model = CLIPVisionModelWithProjection.from_pretrained(eval_clip_id)
    processor = CLIPProcessor.from_pretrained(eval_clip_id)

    return text_model, tokenizer, vis_model, processor


def evaluate_pipe(
    pipe,
    target_images: List[Image.Image],
    class_token: str = "",
    learnt_token: str = "",
    guidance_scale: float = 5.0,
    seed=0,
    clip_model_sets=None,
    eval_clip_id: str = "openai/clip-vit-large-patch14",
    n_test: int = 10,
    n_step: int = 50,
):

    if clip_model_sets is not None:
        text_model, tokenizer, vis_model, processor = clip_model_sets
    else:
        text_model, tokenizer, vis_model, processor = prepare_clip_model_sets(
            eval_clip_id
        )

    images = []
    img_embeds = []
    text_embeds = []
    for prompt in EXAMPLE_PROMPTS[:n_test]:
        prompt = prompt.replace("<obj>", learnt_token)
        torch.manual_seed(seed)
        with torch.autocast("cuda"):
            img = pipe(
                prompt, num_inference_steps=n_step, guidance_scale=guidance_scale
            ).images[0]
        images.append(img)

        # image
        inputs = processor(images=img, return_tensors="pt")
        img_embed = vis_model(**inputs).image_embeds
        img_embeds.append(img_embed)

        prompt = prompt.replace(learnt_token, class_token)
        # prompts
        inputs = tokenizer([prompt], padding=True, return_tensors="pt")
        outputs = text_model(**inputs)
        text_embed = outputs.text_embeds
        text_embeds.append(text_embed)

    # target images
    inputs = processor(images=target_images, return_tensors="pt")
    target_img_embeds = vis_model(**inputs).image_embeds

    img_embeds = torch.cat(img_embeds, dim=0)
    text_embeds = torch.cat(text_embeds, dim=0)

    return text_img_alignment(img_embeds, text_embeds, target_img_embeds)


def visualize_progress(
    path_alls: Union[str, List[str]],
    prompt: str,
    model_id: str = "runwayml/stable-diffusion-v1-5",
    device="cuda:0",
    patch_unet=True,
    patch_text=True,
    patch_ti=True,
    unet_scale=1.0,
    text_sclae=1.0,
    num_inference_steps=50,
    guidance_scale=5.0,
    offset: int = 0,
    limit: int = 10,
    seed: int = 0,
):

    imgs = []
    if isinstance(path_alls, str):
        alls = list(set(glob.glob(path_alls)))

        alls.sort(key=os.path.getmtime)
    else:
        alls = path_alls

    pipe = StableDiffusionPipeline.from_pretrained(
        model_id, torch_dtype=torch.float16
    ).to(device)

    print(f"Found {len(alls)} checkpoints")
    for path in alls[offset:limit]:
        print(path)

        patch_pipe(
            pipe, path, patch_unet=patch_unet, patch_text=patch_text, patch_ti=patch_ti
        )

        tune_lora_scale(pipe.unet, unet_scale)
        tune_lora_scale(pipe.text_encoder, text_sclae)

        torch.manual_seed(seed)
        image = pipe(
            prompt,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
        ).images[0]
        imgs.append(image)

    return imgs